Problem 1 (16 points)

Consider a column of N real scalar fields

$$
\Phi(x)=\left(\begin{array}{c}
\phi_{1}(x) \\
\phi_{2}(x) \\
\vdots \\
\phi_{N}(x)
\end{array}\right)
$$

1. Construct the most general Lagrangian (in four spacetime dimensions) which is Lorentz and $O(N)$ invariant and contains terms with mass dimension at most 4 in Φ and its derivatives.
Hint : The $O(N)$ transformation acts on the fields as $\phi_{i}^{\prime}=\sum_{j} O_{i j} \phi_{j}$, with $O_{i j}$ a (constant) real orthogonal matrix $\left(O^{T} O=1\right)$.
2. Find the equations of motion.
3. In its infinitesimal form, an $O(N)$ transformation can be written as

$$
O_{i j}=\delta_{i j}+\sum_{A} \epsilon_{A} T_{i j}^{A}+\mathcal{O}\left(\epsilon^{2}\right),
$$

where $\epsilon^{A} \ll 1$ are the (constant) parameters of the transformation, $T_{i j}^{A}$ are the socalled generators of $O(N)$, and A runs over the number of independent generators. Show that the $T_{i j}^{A}$ are antisymmetric matrices.
4. Find the Noether current associated with the $O(N)$ invariance of the theory. Show that it is conserved on the equations of motion.
5. Derive the Hamiltonian of this theory.
1.

$$
\mathcal{L}=\frac{1}{2}\left(\partial_{\mu} \Phi\right)^{T} \partial^{\mu} \Phi-\frac{1}{2} m^{2} \Phi^{T} \Phi-\frac{\lambda}{4}\left(\Phi^{T} \Phi\right)^{2},
$$

with $\lambda>0$.
3 points : 1 for each term (-0.5 points for wrong relative factors/signs)
2.

$$
\begin{aligned}
& \partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \Phi\right)}\right)-\frac{\partial \mathcal{L}}{\partial \Phi}=0 \\
& \left(\square+m^{2}\right) \Phi=-\lambda\left(\Phi^{T} \Phi\right) \Phi
\end{aligned}
$$

3 points : 1 for Euler-Lagrange equations, 1 for $\square+m^{2}$, 1 for λ
3. From
$\mathbb{1}=O^{T} O=\left(\mathbb{1}+\epsilon_{A} T^{A}+\mathcal{O}\left(\epsilon^{2}\right)\right)\left(\mathbb{1}+\epsilon_{A}\left(T^{A}\right)^{T}+\mathcal{O}\left(\epsilon^{2}\right)\right)=\mathbb{1}+\epsilon_{A}\left(T^{A}+\left(T^{A}\right)^{T}\right)+\mathcal{O}\left(\epsilon^{2}\right)$,
follows

$$
T^{A}=-\left(T^{A}\right)^{T} \quad \forall \epsilon_{A} .
$$

2 points : 1 for the correct formula, 1 for the end-result
4.

$$
\begin{aligned}
\Phi \rightarrow \Phi^{\prime} & =\Phi+\delta \Phi=\Phi+\epsilon_{A} T^{A} \Phi+\mathcal{O}\left(\epsilon^{2}\right) \\
j_{\mu}^{A} \epsilon_{A} & =\frac{\partial \mathcal{L}}{\partial\left(\partial^{\mu} \Phi\right)} \delta \Phi=\left(\partial_{\mu} \Phi\right)^{T} T^{A} \Phi \epsilon_{A}
\end{aligned}
$$

$\partial^{\mu} j_{\mu}^{A}=\square \Phi^{T} T^{A} \Phi+\left(\partial_{\mu} \Phi\right)^{T} T^{A} \partial^{\mu} \Phi=-\left(m^{2}+\lambda \Phi^{T} \Phi\right) \Phi^{T} T^{A} \Phi+\left(\partial_{\mu} \Phi\right)^{T} T^{A} \partial^{\mu} \Phi=0$ each piece independently is zero, due to symmetric contracted with anti-symmetric.
6 points : 1 for $\delta \phi, 1$ for $\frac{\partial \mathcal{L}}{\partial(\partial \phi)} \delta \phi, 1$ for result, 1.5 for using eom, 1.5 for antisymmetry
5.

$$
\begin{gathered}
\pi=\frac{\partial \mathcal{L}}{\partial \dot{\Phi}}=\dot{\Phi}^{T} \\
H=\int d^{3} x \mathcal{H}=\int d^{3} x(\pi \dot{\Phi}-\mathcal{L})=\int d^{3} x\left(\frac{1}{2} \pi \pi^{T}+\frac{1}{2}\left(\partial_{i} \Phi\right)^{T} \partial_{i} \Phi+\frac{1}{2} m^{2} \Phi^{T} \Phi+\frac{\lambda}{4}\left(\Phi^{T} \Phi\right)^{2}\right)
\end{gathered}
$$

2 points : 1 for the definition of momenta and Hamiltonian (function of ϕ and π), 1 for result

Problem 2 (40 points)

Consider the following Lagrangian (in four spacetime dimensions)

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} M^{2} \phi^{2}+\bar{\psi}(i \not \partial-m) \psi-g \phi \bar{\psi} \gamma_{5} \psi .
$$

Here ϕ is a real scalar field with mass M, ψ the electron-positron field with mass m, g a coupling constant, and $\gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$.

1. Check if the Lagrangian is invariant under $\psi \rightarrow e^{i \alpha} \psi$, with α a constant. If so, derive the corresponding Noether current.
2. Consider the process

$$
e^{-} e^{+} \rightarrow e^{-} e^{+} .
$$

Draw and label the leading-order Feynman diagram or diagrams. Please use p_{1}, p_{2} to indicate the incoming momenta, and p_{3}, p_{4} the outgoing momenta.
3. Derive the spin-averaged amplitude squared in terms of the Mandelstam variables, in the limit $m \rightarrow 0$.
4. Using the above result, derive the spin-averaged amplitude squared for the process

$$
e^{-} e^{-} \rightarrow e^{-} e^{-} .
$$

Hint : You should not need to do any explicit computation.
5. Consider the process $\phi \rightarrow e^{+} e^{-}$. For what masses can this process take place?

1. $\psi \rightarrow e^{i \alpha} \psi$ and $\bar{\psi} \rightarrow e^{-i \alpha} \bar{\psi}$ since α is a constant real number
(a) $\bar{\psi} \psi \rightarrow \bar{\psi} \psi$
(b) $\bar{\psi} \not \partial \psi \rightarrow \bar{\psi} \not \partial \psi$
(c) $\bar{\psi} \gamma_{5} \psi \rightarrow \bar{\psi} \gamma_{5} \psi$
so the Lagrangian is invariant, we get $\psi \rightarrow \psi+i \alpha \psi+\mathcal{O}\left(\alpha^{2}\right)$ and $\bar{\psi} \rightarrow \bar{\psi}-i \alpha \bar{\psi}+$ $\mathcal{O}\left(\alpha^{2}\right)$

$$
j^{\mu} \alpha=\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \psi\right)} i \psi \alpha=-\bar{\psi} \gamma^{\mu} \psi \alpha
$$

since the Lagrangian does not depend on $\partial \bar{\psi}$.
5 points: 3 for each fermion term, 2 points for current
2. Figures :

6 points : 3 for each diagram (2 for drawing, 1 for labeling)
3. 21 points:

$$
\begin{array}{r}
i \mathcal{M}=\bar{v}\left(\vec{p}_{2}, s_{2}\right)(-i g) \gamma_{5} u\left(\vec{p}_{1}, s_{1}\right) \frac{i}{\left(P_{1}+P_{2}\right)^{2}-M^{2}} \bar{u}\left(\vec{p}_{3}, s_{3}\right)(-i g) \gamma_{5} v\left(\vec{p}_{4}, s_{4}\right)- \\
\bar{u}\left(\vec{p}_{3}, s_{3}\right)(-i g) \gamma_{5} u\left(\vec{p}_{1}, s_{1}\right) \frac{i}{\left(P_{1}-P_{3}\right)^{2}-M^{2}} \bar{v}\left(\vec{p}_{2}, s_{2}\right)(-i g) \gamma_{5} v\left(\vec{p}_{4}, s_{4}\right)=-i g^{2}\left(\mathcal{M}_{s}-\mathcal{M}_{t}\right)
\end{array}
$$

$2+1$ (1 for the correct vertex) points for each part +1 point for the correct relative sign
using Mandelstam variables, denoting $u\left(\vec{p}_{j}, s_{j}\right)=u_{j}, v\left(\vec{p}_{j}, s_{j}\right)=v_{j}$ and averaging amplitude

$$
\sum_{s} \frac{1}{4}|\mathcal{M}|^{2}=\sum_{s} \frac{g^{4}}{4}\left(\left|\mathcal{M}_{s}\right|^{2}+\left|\mathcal{M}_{t}\right|^{2}-\left(\mathcal{M}_{s} \mathcal{M}_{t}^{*}+\mathcal{M}_{t} \mathcal{M}_{s}^{*}\right)\right)
$$

1 point for the correct formula above

$$
\begin{aligned}
& \sum_{s}\left|\mathcal{M}_{s}\right|^{2}=\frac{1}{\left(s-M^{2}\right)^{2}} \sum_{s} \operatorname{tr}\left(\gamma_{5} v_{2} \bar{v}_{2} \gamma_{5} u_{1} \bar{u}_{1}\right) \operatorname{tr}\left(\gamma_{5} u_{3} \bar{u}_{3} \gamma_{5} v_{4} \bar{v}_{4}\right)= \\
= & \frac{1}{\left(s-M^{2}\right)^{2}} \operatorname{tr}\left[\gamma_{5} \not P_{2} \gamma_{5} \not P_{1}\right] \operatorname{tr}\left[\gamma_{5} \not P_{3} \gamma_{5} \not P_{4}\right]=\frac{(-1)^{2}}{\left(s-M^{2}\right)^{2}} 16\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)
\end{aligned}
$$

3 points for the correct computation (2 points for trace, 1 for spin averaging)

$$
\begin{aligned}
& \sum_{s}\left|\mathcal{M}_{t}\right|^{2}=\frac{1}{\left(t-M^{2}\right)^{2}} \sum_{s} \operatorname{tr}\left(\gamma_{5} u_{3} \bar{u}_{3} \gamma_{5} u_{1} \bar{u}_{1}\right) \operatorname{tr}\left(\gamma_{5} v_{2} \bar{v}_{2} \gamma_{5} v_{4} \bar{v}_{4}\right)= \\
= & \frac{1}{\left(t-M^{2}\right)^{2}} \operatorname{tr}\left[\gamma_{5} \not P_{3} \gamma_{5} \not P_{1}\right] \operatorname{tr}\left[\gamma_{5} \not P_{2} \gamma_{5} \not P_{4}\right]=\frac{(-1)^{2}}{\left(t-M^{2}\right)^{2}} 16\left(P_{1} P_{3}\right)\left(P_{2} P_{4}\right)
\end{aligned}
$$

3 points for the correct computation (2 points for trace, 1 for spin averaging)

$$
\begin{array}{r}
\sum_{s} \mathcal{M}_{s} \mathcal{M}_{t}^{*}=\frac{1}{\left(t-M^{2}\right)\left(s-M^{2}\right)} \sum_{s} \operatorname{tr}\left(v_{4} \bar{v}_{4} \gamma_{5} v_{2} \bar{v}_{2} \gamma_{5} u_{1} \bar{u}_{1} \gamma_{5} u_{3} \bar{u}_{3} \gamma_{5}\right)= \\
=\frac{1}{\left(t-M^{2}\right)\left(s-M^{2}\right)} \sum_{s} \operatorname{tr}\left(\not P_{4} \gamma_{5} P_{2} \gamma_{5} \not P_{1} \gamma_{5} P_{3} \gamma_{5}\right)= \\
=\frac{(-1)^{2} \cdot 4}{\left(t-M^{2}\right)\left(s-M^{2}\right)}\left(\left(P_{1} P_{2}\right)\left(P_{3} P_{4}\right)+\left(P_{2} P_{4}\right)\left(P_{1} P_{3}\right)-\left(P_{2} P_{3}\right)\left(P_{1} P_{4}\right)\right)=\sum_{s} \mathcal{M}_{t} \mathcal{M}_{s}^{*}
\end{array}
$$

3 points for both the above terms (1.5 each)
For showing explicitly the γ_{5} manipulations (changing the sign of M^{*} and correct sign when anticommuting γ_{5}) we give $1+1$ points, in total

$$
\begin{array}{r}
\left(P_{1} P_{3}\right)=\left(P_{2} P_{4}\right)=-\frac{t}{2} \\
\left(P_{1} P_{2}\right)=\left(P_{3} P_{4}\right)=\frac{s}{2} \\
\left(P_{1} P_{4}\right)=\left(P_{2} P_{3}\right)=-\frac{u}{2}
\end{array}
$$

1 point for the above

$$
\sum_{s} \frac{1}{4}|\mathcal{M}|^{2}=g^{4}\left[\frac{s^{2}}{\left(s-M^{2}\right)^{2}}+\frac{t^{2}}{(t-M)^{2}}-\frac{1}{2} \frac{s^{2}+t^{2}-u^{2}}{\left(s-M^{2}\right)\left(t-M^{2}\right)}\right]
$$

or, using $u^{2}=(s+t)^{2}$,

$$
\sum_{s} \frac{1}{4}|\mathcal{M}|^{2}=g^{4}\left[\frac{s^{2}}{\left(s-M^{2}\right)^{2}}+\frac{t^{2}}{(t-M)^{2}}+\frac{s t}{\left(s-M^{2}\right)\left(t-M^{2}\right)}\right]
$$

1 point for the final result
4. $\left|\mathcal{M}\left(e^{-}\left(P_{1}\right) e^{-}\left(P_{2}\right) \rightarrow e^{-}\left(P_{3}\right) e^{-}\left(P_{4}\right)\right)\right|^{2}=\left|\mathcal{M}\left(e^{-}\left(P_{1}\right) e^{+}\left(-P_{4}\right) \rightarrow e^{-}\left(P_{3}\right) e^{+}\left(-P_{2}\right)\right)\right|^{2}$ which means $s \leftrightarrow u$ and $t \leftrightarrow t$

$$
\sum_{s} \frac{1}{4}|\mathcal{M}|^{2}=g^{4}\left[\frac{u^{2}}{\left(u-M^{2}\right)^{2}}+\frac{t^{2}}{(t-M)^{2}}+\frac{u t}{\left(u-M^{2}\right)\left(t-M^{2}\right)}\right]
$$

5 points: 3 for exchanging momenta, 2 for Mandelstam
5. Energy-momentum conservation requires $M \geq 2 m$. But for $M=2 m$ amplitude is identically zero, so we need $M>2 m$.
3 points: 2 for $\geq,+1$ for the stricter bound $>$ (including the explanation that the amplitude vanishes for $M=2 m$)

Problem 3 (22 points)

1. Write down the QED Lagrangian.
2. Derive the equations of motion for the fields.
3. Write down the Feynman diagrams for the process $e^{-} \gamma \rightarrow e^{-} \gamma$ and show that the corresponding amplitude can be written as

$$
i \mathcal{M}=\epsilon^{\mu}\left(\vec{k}_{1}\right) \epsilon^{\nu}\left(\vec{k}_{2}\right) \mathcal{A}_{\mu \nu} .
$$

Hint : You don't need to fully simplify your result.
4. Show that $k_{1}^{\mu} \mathcal{A}_{\mu \nu}=0$ and explain why this is expected.

Hint : Use four-momentum conservation and Dirac equation in momentum space.
1.

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\bar{\psi}(i \not \partial-m) \psi-e \bar{\psi} A \mathcal{A} \psi
$$

3 points : 1 for each term. If they use covariant derivative they should define and explain
2.

$$
\begin{gathered}
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} A_{\nu}\right)}\right)-\frac{\partial \mathcal{L}}{\partial A_{\nu}}=0 \\
\partial_{\mu}\left[-\frac{1}{2} F^{\alpha \beta}\left(\delta_{\alpha}^{\mu} \delta_{\beta}^{\nu}-\delta_{\beta}^{\mu} \delta_{\alpha}^{\nu}\right)\right]+e \bar{\psi} \gamma^{\nu} \psi=0 \\
-\partial_{\mu} F^{\mu \nu}+e \bar{\psi} \gamma^{\nu} \psi=0 \\
\partial_{\mu}\left(\frac{\partial \mathcal{L}}{\partial\left(\partial_{\mu} \bar{\psi}\right)}\right)-\frac{\partial \mathcal{L}}{\partial \bar{\psi}}=0 \\
(i \not \partial-m) \psi=e A \psi
\end{gathered}
$$

with same manner

$$
i \partial_{\mu} \bar{\psi} \gamma^{\mu}+m \bar{\psi}=-e \bar{\psi} A
$$

4 points : 1 for E-L, 2 for photon (1 for explicit calculation), 1 for fermions
3. 7 points:

Figures:

2 points for each diagram (1 for drawing, 1 for labeling)

$$
\begin{aligned}
i \mathcal{M}= & \bar{u}_{2}(-i e) \gamma^{\mu} \frac{i}{\not P_{1}+k_{1}-m}(-i e) \gamma^{\nu} u_{1} \epsilon_{\mu}\left(\vec{k}_{2}\right) \epsilon_{\nu}\left(\vec{k}_{1}\right)+ \\
& +\bar{u}_{2}(-i e) \gamma^{\mu} \frac{i}{P_{1}-k_{2}-m}(-i e) \gamma^{\nu} u_{1} \epsilon_{\mu}\left(\vec{k}_{1}\right) \epsilon_{\nu}\left(\vec{k}_{2}\right)
\end{aligned}
$$

2 points, 1 for each term
$i \mathcal{M}=\epsilon_{\mu}\left(\vec{k}_{1}\right) \epsilon_{\nu}\left(\vec{k}_{2}\right) A^{\mu \nu}$, with

$$
A^{\mu \nu}=-i e^{2}\left[\bar{u}_{2} \gamma^{\nu} \frac{1}{\not P_{1}+\not k_{1}-m} \gamma^{\mu} u_{1}+\bar{u}_{2} \gamma^{\mu} \frac{1}{\not P_{1}-\not k_{2}-m} \gamma^{\nu} u_{1}\right]
$$

1 point for writing $A^{\mu \nu}$ explicitly
4. 8 points:

$$
k_{1 \mu} A^{\mu \nu}=-i e^{2}\left[\bar{u}_{2} \gamma^{\nu} \frac{1}{\not P_{1}+k_{1}-m} \not k_{1} u_{1}+\bar{u}_{2} \not k_{1} \frac{1}{\not P_{1}-\not /_{2}-m} \gamma^{\nu} u_{1}\right]
$$

Using $\left(\not P_{1}-m\right) u_{1}=0$ and $\bar{u}_{2}\left(\not P_{2}-m\right)=0$, we get

$$
\frac{1}{\not P_{1}+\not k_{1}-m} \not k_{1} u_{1}=\frac{1}{\not P_{1}+\not k_{1}-m}\left(\not k_{1}+\not P_{1}-m\right) u_{1}=u_{1}
$$

and

$$
\bar{u}_{2} \not k_{1} \frac{1}{P_{1}-\not k_{2}-m}=\bar{u}_{2}\left(\not k_{1}-\not P_{2}+m\right) \frac{1}{\not P_{2}-\not k_{1}-m}=-\bar{u}_{2},
$$

2 points for each term for using Dirac equation +2 points in total for momentum conservation
so we get

$$
k_{1 \mu} A^{\mu \nu} \propto \bar{u}_{2} \gamma^{\nu} u_{1}-\bar{u}_{2} \gamma^{\nu} u_{1}=0 .
$$

1 point for the final result
This result shows, that on physical amplitudes longitudinal photon vanishes. 1 point for explanation (simply writing Ward identity or current conservation is not enough)

Problem 4 (22 points)

1. Using a complex scalar field ϕ with mass m_{ϕ} and the photon A_{μ}, write down the most general Lorentz and $U(1)$ gauge invariant Lagrangian up to (and including) terms of mass dimension 4.
2. Draw and label the two one-loop Feynman diagrams associated with the photon vacuum polarization in this theory.
3. Now work in four spacetime dimensions and check that $q^{\mu} \Pi_{\mu \nu}(q)=0$.

Hint : You do not need to explicitly carry out the integrals. Use the relation $\pm 2 q k+q^{2}=(k \pm q)^{2}-m^{2}-\left(k^{2}-m^{2}\right)$.
1.

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}+\left(D_{\mu} \phi\right)^{*} D^{\mu} \phi-m_{\phi}^{2} \phi^{*} \phi-\frac{\lambda}{4}\left(\phi^{*} \phi\right)^{2}
$$

with $D_{\mu}=\partial_{\mu}-i e A_{\mu}$, since under $\phi \rightarrow e^{i \alpha(x)} \phi, \phi^{*} \phi$ is invariant and $D_{\mu} \phi \rightarrow e^{i \alpha} D_{\mu} \phi$, which makes kinetic term invariant as well. One could also expand the scalar kinetic term directly :

$$
\left(D_{\mu} \phi\right)^{*} D^{\mu} \phi=\left(\partial_{\mu} \phi\right)^{*} \partial^{\mu} \phi-i e A^{\mu}\left(\phi \partial_{\mu} \phi^{*}-\phi^{*} \partial_{\mu} \phi\right)+e^{2} A_{\mu} A^{\mu} \phi \phi^{*}
$$

6 points total : 1 for each term
2. Figure:

6 points : 3 for each diagram (2 for drawing, 1 for labeling)
3. 10 points :

$$
i \Pi(q)_{\mu \nu}=\int \frac{d^{4} k}{(2 \pi)^{4}}(i e)\left(2 k_{\mu}+q_{\mu}\right) \frac{i}{(k+q)^{2}-m_{\phi}^{2}}(i e)\left(2 k_{\nu}+q_{\nu}\right) \frac{i}{k^{2}-m_{\phi}^{2}}+\int \frac{d^{4} k}{(2 \pi)^{4}} 2 i e^{2} \eta_{\mu \nu} \frac{i}{k^{2}-m_{\phi}^{2}}
$$

4 points, 2 for each term

$$
i q^{\mu} \Pi(q)_{\mu \nu}=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(2 k q+q^{2}\right) \frac{1}{(k+q)^{2}-m_{\phi}^{2}}\left(2 k_{\nu}+q_{\nu}\right) \frac{1}{k^{2}-m_{\phi}^{2}}-2 e^{2} q_{\nu} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m_{\phi}^{2}} .
$$

Using the hint, we get

$$
\begin{aligned}
\left(2 k q+q^{2}\right) \frac{1}{(k+q)^{2}-m_{\phi}^{2}}\left(2 k_{\nu}+q_{\nu}\right) \frac{1}{k^{2}-m_{\phi}^{2}} & =\left(2 k_{\nu}+q_{\nu}\right) \frac{(k+q)^{2}-m_{\phi}^{2}-\left(k^{2}-m_{\phi}^{2}\right)}{\left[(k+q)^{2}-m_{\phi}^{2}\right]\left[k^{2}-m_{\phi}^{2}\right]}= \\
& =\left(2 k_{\nu}+q_{\nu}\right)\left[\frac{1}{k^{2}-m_{\phi}^{2}}-\frac{1}{(k+q)^{2}-m_{\phi}^{2}}\right],
\end{aligned}
$$

1 point for using the hint correctly
which gives
$i q^{\mu} \Pi(q)_{\mu \nu}=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}}\left(2 k_{\nu}+q_{\nu}\right)\left[\frac{1}{k^{2}-m_{\phi}^{2}}-\frac{1}{(k+q)^{2}-m_{\phi}^{2}}\right]-2 e^{2} q_{\nu} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m_{\phi}^{2}}$.
In the second term, substituting $k+q=l$, we get
$i q^{\mu} \Pi(q)_{\mu \nu}=e^{2} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{2 k_{\nu}+q_{\nu}}{k^{2}-m_{\phi}^{2}}-e^{2} \int \frac{d^{4} l}{(2 \pi)^{4}} \frac{2 l_{\nu}-q_{\nu}}{l^{2}-m_{\phi}^{2}}-2 e^{2} q_{\nu} \int \frac{d^{4} k}{(2 \pi)^{4}} \frac{1}{k^{2}-m_{\phi}^{2}}$.

3 points for substitution
Relabeling $l \rightarrow k$, we get $q^{\mu} \Pi(q)_{\mu \nu}=0$.
2 points for end-result

