Quantum Field Theory (Quantum Electrodynamics)

Prof. Dr. Georgi Dvali

12 February 2020

First and last name :

Matriculation number : \qquad

Number of extra sheets : \qquad

Guidelines :

- The exam consists of 4 problems.
- The duration of the exam is 3 hours.
- Please write your name and matriculation number on every sheet that you hand in. State the number of extra sheets.
- You are not allowed to use books or notes. Some potentially useful formulas can be found on the last page.
- Do you agree that your results be published on the course website?yesno
- Your answers should be comprehensible and readable.

GOOD LUCK!

Do not write below this line.

Comments :

Exercise 1	$/ 16 \mathrm{P}$
Exercise 2	$/ 40 \mathrm{P}$
Exercise 3	$/ 22 \mathrm{P}$
Exercise 4	$/ 22 \mathrm{P}$

Total	$/ 100 \mathrm{P}$
Grade	

Problem 1 (16 points)

Consider a column of N real scalar fields

$$
\Phi(x)=\left(\begin{array}{c}
\phi_{1}(x) \\
\phi_{2}(x) \\
\vdots \\
\phi_{N}(x)
\end{array}\right)
$$

1. Construct the most general Lagrangian (in four spacetime dimensions) which is Lorentz and $O(N)$ invariant and contains terms with mass dimension at most 4 in Φ and its derivatives.
Hint : The $O(N)$ transformation acts on the fields as $\phi_{i}^{\prime}=\sum_{j} O_{i j} \phi_{j}$, with $O_{i j}$ a (constant) real orthogonal matrix ($O^{T} O=1$).
2. Find the equations of motion.
3. In its infinitesimal form, an $O(N)$ transformation can be written as

$$
O_{i j}=\delta_{i j}+\sum_{A} \epsilon_{A} T_{i j}^{A}+\mathcal{O}\left(\epsilon^{2}\right),
$$

where $\epsilon^{A} \ll 1$ are the (constant) parameters of the transformation, $T_{i j}^{A}$ are the socalled generators of $O(N)$, and A runs over the number of independent generators. Show that the $T_{i j}^{A}$ are antisymmetric matrices.
4. Find the Noether current associated with the $O(N)$ invariance of the theory. Show that it is conserved on the equations of motion.
5. Derive the Hamiltonian of this theory.

Problem 2 (40 points)

Consider the following Lagrangian (in four spacetime dimensions)

$$
\mathcal{L}=\frac{1}{2}(\partial \phi)^{2}-\frac{1}{2} M^{2} \phi^{2}+\bar{\psi}(i \not \partial-m) \psi-g \phi \bar{\psi} \gamma_{5} \psi .
$$

Here ϕ is a real scalar field with mass M, ψ the electron-positron field with mass m, g a coupling constant, and $\gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3}$.

1. Check if the Lagrangian is invariant under $\psi \rightarrow e^{i \alpha} \psi$, with α a constant. If so, derive the corresponding Noether current.
2. Consider the process

$$
e^{-} e^{+} \rightarrow e^{-} e^{+} .
$$

Draw and label the leading-order Feynman diagram or diagrams. Please use p_{1}, p_{2} to indicate the incoming momenta, and p_{3}, p_{4} the outgoing momenta.
3. Derive the spin-averaged amplitude squared in terms of the Mandelstam variables, in the limit $m \rightarrow 0$.
4. Using the above result, derive the spin-averaged amplitude squared for the process

$$
e^{-} e^{-} \rightarrow e^{-} e^{-} .
$$

Hint : You should not need to do any explicit computation.
5. Consider the process $\phi \rightarrow e^{+} e^{-}$. For what masses can this process take place?

Problem 3 (22 points)

1. Write down the QED Lagrangian.
2. Derive the equations of motion for the fields.
3. Write down the Feynman diagrams for the process $e^{-} \gamma \rightarrow e^{-} \gamma$ and show that the corresponding amplitude can be written as

$$
i \mathcal{M}=\epsilon^{\mu}\left(\vec{k}_{1}\right) \epsilon^{\nu}\left(\vec{k}_{2}\right) \mathcal{A}_{\mu \nu} .
$$

Hint : You don't need to fully simplify your result.
4. Show that $k_{1}^{\mu} \mathcal{A}_{\mu \nu}=0$ and explain why this is expected.

Hint : Use four-momentum conservation and Dirac equation in momentum space.

Problem 4 (22 points)

1. Using a complex scalar field ϕ with mass m_{ϕ} and the photon A_{μ}, write down the most general Lorentz and $U(1)$ gauge invariant Lagrangian up to (and including) terms of mass dimension 4.
2. Draw and label the two one-loop Feynman diagrams associated with the photon vacuum polarization in this theory.
3. Now work in four spacetime dimensions and check that $q^{\mu} \Pi_{\mu \nu}(q)=0$.

Hint : You do not need to explicitly carry out the integrals. Use the relation $\pm 2 q k+q^{2}=(k \pm q)^{2}-m^{2}-\left(k^{2}-m^{2}\right)$.

Potentially useful formulas

Decomposition in terms of ladder operators

Massive real scalar field

$$
\begin{gathered}
\phi(x)=\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3} 2 \omega_{\vec{p}}}\left(a(\vec{p}) e^{-i p x}+a^{+}(\vec{p}) e^{i p x}\right), \quad \omega_{\vec{p}}=\sqrt{|\vec{p}|^{2}+m^{2}} . \\
{\left[a(\vec{p}), a^{+}\left(\overrightarrow{p^{\prime}}\right)\right]=(2 \pi)^{3} 2 \omega_{\vec{p}} \delta^{(3)}\left(\vec{p}-\overrightarrow{p^{\prime}}\right) .}
\end{gathered}
$$

Massive complex scalar field

$$
\begin{gathered}
\chi(x)=\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3} 2 \omega_{\vec{p}}}\left(a(\vec{p}) e^{-i p x}+b^{+}(\vec{p}) e^{i p x}\right), \quad \omega_{\vec{p}}=\sqrt{|\vec{p}|^{2}+m^{2}} . \\
{\left[a(\vec{p}), a^{+}\left(\overrightarrow{p^{\prime}}\right)\right]=\left[b(\vec{p}), b^{+}\left(\overrightarrow{p^{\prime}}\right)\right]=(2 \pi)^{3} 2 \omega_{\vec{p}} \delta^{(3)}\left(\vec{p}-\overrightarrow{p^{\prime}}\right) .}
\end{gathered}
$$

Massive fermionic field

$$
\begin{gathered}
\psi(x)=\int \frac{\mathrm{d}^{3} \vec{p}}{(2 \pi)^{3} 2 \omega_{\vec{p}}} \sum_{i}\left(u_{i}(\vec{p}) a_{i}(\vec{p}) e^{-i p x}+v_{i}(\vec{p}) b_{i}^{+}(\vec{p}) e^{i p x}\right), \quad \omega_{\vec{p}}=\sqrt{|\vec{p}|^{2}+m^{2}} . \\
\left\{a_{i}(\vec{p}), a_{j}^{+}\left(\overrightarrow{p^{\prime}}\right)\right\}=\left\{b_{i}(\vec{p}), b_{j}^{+}\left(\overrightarrow{p^{\prime}}\right)\right\}=(2 \pi)^{3} 2 \omega_{\vec{p}} \delta_{i j} \delta^{(3)}\left(\vec{p}-\overrightarrow{p^{\prime}}\right) . \\
(\not p-m) u(p)=0, \quad \bar{u}(p)(\not p-m)=0 . \\
(\not p+m) v(p)=0, \quad \bar{v}(p)(\not p+m)=0 . \\
\sum_{s} u_{s}(p) \bar{u}_{s}(p)=\not p+m, \quad \sum_{s} v_{s}(p) \bar{v}_{s}(p)=\not p-m .
\end{gathered}
$$

Photon

$$
\begin{gathered}
A^{\mu}(x)=\int \frac{\mathrm{d}^{3} \vec{k}}{(2 \pi)^{3} 2 \omega_{\vec{k}}} \sum_{r=0}^{3} \epsilon_{r}^{\mu}\left(a_{r}(\vec{k}) e^{-i k x}+a_{r}^{+}(\vec{k}) e^{i k x}\right), \quad \omega_{\vec{k}}=|\vec{k}| \\
{\left[a_{r}(\vec{k}), a_{s}^{+}\left(\overrightarrow{k^{\prime}}\right)\right]=(2 \pi)^{2} 2 \omega_{\vec{k}} \zeta_{s} \delta_{r s} \delta^{(3)}\left(\vec{k}-\overrightarrow{k^{\prime}}\right), \quad \zeta_{0}=-1, \zeta_{1,2,3}=1} \\
\eta_{\mu \nu} \epsilon_{r}^{\mu} \epsilon_{s}^{\nu}=-\zeta_{s} \delta_{r s}, \quad \sum_{r=0}^{3} \zeta_{r} \epsilon_{r}^{\mu} \epsilon_{r}^{\nu}=-\eta^{\mu \nu}
\end{gathered}
$$

$$
\begin{gathered}
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}, \quad \gamma^{\mu} \gamma_{\mu}=4, \quad \gamma^{\mu} \gamma^{\alpha} \gamma_{\mu}=-2 \gamma^{\alpha}, \quad \gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma_{\mu}=4 \eta^{\alpha \beta}, \\
\gamma^{\mu} \gamma^{\alpha} \gamma^{\beta} \gamma^{\gamma} \gamma_{\mu}=-2 \gamma^{\gamma} \gamma^{\beta} \gamma^{\alpha}, \\
\left(\gamma_{5}\right)^{2}=1, \quad \gamma_{5}^{+}=\gamma_{5}, \quad \text { with } \quad \gamma_{5}=i \gamma_{0} \gamma_{1} \gamma_{2} \gamma_{3} \\
\left\{\gamma_{5}, \gamma_{\mu}\right\}=0 \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu}\right)=4 \eta^{\mu \nu} \\
\operatorname{tr}\left(\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}\right)=4\left(\eta^{\mu \nu} \eta^{\alpha \beta}+\eta^{\mu \beta} \eta^{\nu \alpha}-\eta^{\mu \alpha} \eta^{\nu \beta}\right) \\
\operatorname{tr}\left(\gamma_{5}\right)=0
\end{gathered}
$$

Projection Operators

$$
\begin{gathered}
P_{L, R}=\frac{1 \mp \gamma_{5}}{2}, \\
P_{L}^{2}=P_{L}, \quad P_{R}^{2}=P_{R}, \quad P_{L} P_{R}=0, \quad P_{R} P_{L}=0, \quad P_{L}+P_{R}=1
\end{gathered}
$$

Mandelstam variables

$s=\left(p_{1}+p_{2}\right)^{2}=\left(p_{3}+p_{4}\right)^{2}, \quad t=\left(p_{1}-p_{3}\right)^{2}=\left(p_{2}-p_{4}\right)^{2}, \quad u=\left(p_{1}-p_{4}\right)^{2}=\left(p_{2}-p_{3}\right)^{2}$.

$$
\begin{array}{ll}
\longrightarrow & \rightarrow \\
\mu \sim \sim m \sim & \left(\frac{i}{\not p-m+i \varepsilon}\right) \\
\mu & \rightarrow \\
& \frac{-i \eta_{\mu \nu}}{p^{2}+i \varepsilon}
\end{array}
$$

$$
\text { Incoming fermion: } \quad \longrightarrow \quad \rightarrow \quad u(\vec{p}, s)
$$

Incoming antifermion: $\longrightarrow \longrightarrow \quad \bar{v}^{\prime}(\vec{p}, s)$

Outgoing fermion:
\longrightarrow
$\rightarrow \quad \bar{u}(\vec{p}, s)$

Outgoing antifermion: $\quad \backsim \longleftarrow \longleftarrow, \quad \rightarrow \quad v(p, s)$
photon: $\mu \sim \sim \sim$
$\rightarrow \quad \epsilon_{\mu}(\vec{k}, \lambda)$

Cubic and quartic vertices for scalar - photon interaction

