
PH
YS

IC
S

Emergence of homochirality in large molecular
systems
Gabin Laurenta,1,2 , David Lacostea,1 , and Pierre Gaspardb,1
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The selection of a single molecular handedness, or homochirality
across all living matter, is a mystery in the origin of life. Frank’s
seminal model showed in the ’50s how chiral symmetry break-
ing can occur in nonequilibrium chemical networks. However, an
important shortcoming in this classic model is that it considers a
small number of species, while there is no reason for the prebi-
otic system, in which homochirality first appeared, to have had
such a simple composition. Furthermore, this model does not
provide information on what could have been the size of the
molecules involved in this homochiral prebiotic system. Here, we
show that large molecular systems are likely to undergo a phase
transition toward a homochiral state, as a consequence of the
fact that they contain a large number of chiral species. Using
chemoinformatics tools, we quantify how abundant chiral species
are in the chemical universe of all possible molecules of a given
length. Then, we propose that Frank’s model should be extended
to include a large number of species, in order to possess the
transition toward homochirality, as confirmed by numerical sim-
ulations. Finally, using random matrix theory, we prove that large
nonequilibrium reaction networks possess a generic and robust
phase transition toward a homochiral state.

homochirality | origin of life | prebiotic chemistry | random matrices |
statistical physics

L ife on Earth relies on chiral molecules—that is, species
not superposable on their mirror images. A given biologi-

cal molecule forms with its mirror image a pair of enantiomers.
Homochirality precisely means the dominance of one member
of the pair across the entire biosphere. For instance, in our
cells, biochemical reaction networks only involve left-handed (L-
chiral) amino acids and right-handed (D-chiral) sugars, but the
reason for this absolute specificity escapes us and is one of the
most fascinating questions in the origin of life.

The origin of homochirality comes with two questions and
related observations: What caused the initial bias of one enan-
tiomer over the other in the presumably racemic environment
of the prebiotic world, and how was this bias sustained and
maintained as in today’s biological world (1)? It is believed that
mineral surfaces on Earth (2) or circularly polarized light in
interstellar space (3) could explain the first observation, while
models based on nonequilibrium reaction networks can explain
the second observation (4–15).

However, there is an important shortcoming in the common
discussions addressing the issue of homochirality—namely, that
they only consider a small number of chiral species, as in Frank’s
classic model (4) or in its first experimental realization more than
40 years later by Soai et al. (16). There is no reason to expect that
the prebiotic world, in which homochirality first emerged, had
such a simple and homogeneous chemical composition. Instead,
it is more natural to assume that this composition was complex,
heterogeneous, and included a large number of chiral and achi-
ral species. We show in this paper that generic nonequilibrium
reaction networks possess a phase transition toward a homochi-
ral state as a consequence of the fact that the number of chiral
species becomes large.

Cross-Over between Chiral and Achiral Chemical Worlds
With this aim, we first ask how abundant are chiral species
in the chemical universe of all possible molecules? It turns
out that chirality is rare among molecules with a small num-
ber of atoms, but that possible chiral stereoisomers multiply
as their number of atoms increases. Accordingly, we should
expect a cross-over between the achiral world of small molecules
and the chiral world of large molecules involved in chemical-
reaction networks. The cross-over should be characterized by
some specific number of atoms, where the fractions of achiral
and chiral molecules become equal, as schematically depicted in
Fig. 1A. Beyond the cross-over, the chiral molecules are domi-
nant over achiral ones. The issue of this cross-over is important,
in particular, because it associates the emergence of homochi-
rality with some molecular size. Starting with monosubstituted
alkanes and alkanes for which an exact enumeration of stereoiso-
mers is available (17, 18), we find that the cross-over measured
in number of carbon atoms in these molecules lies between
4.7 and 5.7 for monosubstituted alkanes and between 8.4 and
9.5 for alkanes.

In the chemical universe of Fink and Reymond (19), which
contains all virtual molecules of a given number of heavy atoms
(i.e., atoms heavier than hydrogen), and satisfying some basic set
of rules of chemistry, we find a cross-over at 8.5 heavy atoms.
Since a similar study was not available for real molecules, we turn
to the chemical database PubChem (20). From the raw data of
this large database, we find that a cross-over occurs for molecules
of 9.4 heavy atoms (SI Appendix, section S1). However, since
many chiral molecules do not have all of their enantiomers or
stereoisomers, we have also analyzed an expanded database, in
which every chiral molecule contains either all its enantiomers
or all its stereoisomers. In Fig. 1B, the fractions of chiral and
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A B

Fig. 1. Cross-over between the achiral and chiral chemical worlds. (A) A three-dimensional schematic representation of the fractions of possible achiral
and chiral molecules as function of their number of atoms. Every chiral molecule appears as mirror-reflected D- and L-enantiomers. (B) A two-dimensional
representation of the fractions of achiral (circles) and chiral (squares) molecules in an expanded PubChem database containing all of the stereoisomers of
molecules with at most n≤ 20 heavy atoms. Filled symbols correspond to counting stereoisomers twice, while open symbols correspond to counting them
once in the fractions. Error bars are smaller than symbol sizes, and the cross-over occurs at n2' 6.4 and n1' 8.1, depending on which counting is considered
(SI Appendix, section S1).

achiral species are shown for the case of the database expanded
in stereoisomers. Our results for the various estimates for the
cross-over are gathered in Table 1 and extracted from Fig. 1B and
SI Appendix, Figs. S1, S2, S3, and S4. Remarkably, irrespective
of the precise procedure to generate and analyze the database
and regardless of the precise composition of the molecules, the
cross-over between the achiral and chiral worlds occurs for a
number of heavy atoms of the order of about 10. The main con-
sequence of this cross-over is that the stereoisomer distribution
goes from unimodal (with a maximum for achiral molecules) to
bimodal (with maxima for opposite enantiomers) as the length
of molecules increases. This emerging bimodality is potentially
susceptible to induce a chiral symmetry breaking.

Spontaneous Symmetry Breaking into a Chiral State
We now come to our central point—namely, on how to explain
the emergence of homochirality from the multiplication of chi-
ral species in nonequilibrium reaction networks. Specifically, we
consider a reaction network involving achiral and chiral species
described by the concentration vector c, which contains the vec-
tor cD (resp. cL) for the NC D-enantiomers (resp. for the NC

L-enantiomers) and the vector cA for the remaining NA achiral
species. In such a system, the evolution of the concentrations is
ruled by

dc
dt

= F(c) +
1

τ
(c0− c), [1]

where c0 is the concentration vector of the species supplied from
the environment at the rate 1/τ and responsible for driving the
system out of equilibrium, and F(c) =ν ·w(c) are the reaction
rates with specific chiral symmetry (Eq. 14 in Materials and Meth-
ods), which need not obey mass-action law. In this expression, ν
is the matrix of stoichiometric coefficients and w(c) the set of net
reaction rates. After reaction, the species in excess are flowing
out of the system at the same rate 1/τ as for the supply, so that τ
represents the mean residence time of the species in the system.

The stability of these equations may be characterized by lin-
earizing them about the racemic state, which is defined by the
condition cD = cL and is assumed to exist in a steady state. With
the small parameter δx, where x denotes the chiral enantiomeric
excess x≡ 1

2
(cL− cD), we obtain

d

dt
δx =

(
J− 1

τ

)
· δx +

1

τ
δx0, [2]

where J represents the Jacobian matrix deduced from the kinetic
Eq. 1. The racemic mixture is unstable if at least one of the eigen-
values of the matrix M = J− 1

τ
I (with I the identity matrix) has

a positive real part. In a large reaction network, the reaction
rates may take very different values, so that the matrix J may
be treated as a random matrix (21–23). The simplest model is
to assume that the elements of this matrix are independent and
identically distributed real numbers (but not necessarily Gaus-
sian distributed) of mean value µ and variance σ2 (24). When
µ= 0, random matrix theory shows that the complex eigenval-
ues are uniformly distributed in a disk of radius σ

√
NC in the

limit of large values of NC (25). When µ 6= 0, we find that there
exists a single and isolated eigenvalue, which is equal to µNC, and
the corresponding eigenvector has uniform components to dom-
inant order (SI Appendix, section S2). Two possible mechanisms
for the instability of the racemic state then emerge for large NC

(SI Appendix, section S3). Either mechanism (i), the instability
occurs due to the isolated eigenvalue, as illustrated in Fig. 2 D–F;
otherwise, mechanism (ii) occurs due to the eigenvalues located
on the edge of the circle (which may be real or complex valued),

Table 1. Positions of the cross-over n1 and n2, measured in terms
of number of carbon atoms, in the study of alkanes and
monosubstituted alkanes, or in terms of number of heavy atoms
in the other studies.

Data n1 n2

Monosubstituted alkanes stereoisomers 5.7 4.7
Alkanes stereoisomers 9.5 8.4
Chemical universe 8.5 —
PubChem database using raw data 9.4∗ —
PubChem database using generated enantiomers 12.7 6.7
PubChem database using generated stereoisomers 8.1 6.4

The estimate n1 (resp. n2) is obtained by counting one (resp. twice) the
pairs of enantiomers.
∗The cross-over for PubChem raw data occurs between n1 and n2 because
not all enantiomers of a given species are present in the database.
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Fig. 2. Distribution of eigenvalues and corresponding instability criterion. A–C represent the eigenvalues of the random matrix M with Gaussian entries with
µ= 0, σ= 1, and τ = 1/

√
2,000, where the instability mechanism (ii) occurs as NC increases, i.e., the edge of the Girko’s circle densely filled by eigenvalues

crosses the zero real axis. D–F depict the mechanism (i), where the zero real axis is crossed by an isolated eigenvalue. In this case, the matrix M is a random
matrix with Gaussian entries of parameters µ= 1/

√
2,000, σ= 0.7, and τ = 1/

√
2,000. The gray-colored area represents the positive real part zone of the

complex plane, i.e., the area in which an eigenvalue causes the instability. Sizes of random matrices M are NC = 1,500 for A and D, NC = 2,000 for B and E,
and NC = 2,500 for C and F. G represents the probability for the racemic state of the chemical system to be unstable as a function of NC. The black curve
represents the mechanism (i) for a Gaussian random matrix M with µ= 1/

√
100, σ= 0.7, and τ = 1/

√
100. The magenta curve represents the mechanism

(ii) for a Gaussian random matrix M with µ= 0, σ= 1 and τ = 1/
√

100. The gray-colored area represents the theoretical instability area, which is N> 100
for both mechanisms here, given the choice of parameters µ, σ, and τ . The statistics has been carried out over 100, 000 realizations of random matrices.
Note also that the two curves in G for the two mechanisms were drawn for different parameters, µ and σ.

as illustrated in Fig. 2 A–C. It follows from this that when µ> 0
and NC≥max{1/(τµ), (σ/µ)2}, the system becomes unstable
by the first mechanism, where all species become simultaneously
unstable, and when (σ/µ)2≥NC≥ 1/(τσ)2, the system becomes
unstable by the second mechanism, and, in this case, only a sub-
part of all of the species become unstable at the transition. In
such cases, random matrix theory predicts that as NC becomes
large, these mechanisms of instability become more and more
likely. This is confirmed by the shape of the probability for the
racemic state to be unstable versus NC shown in Fig. 2G for both
mechanisms. If the matrix elements are statistically correlated,
the nondominant eigenvalues may have a different distribution,
but the isolated eigenvalue behaves similarly.

The Effect of Chiral Species Multiplication
In order to show that this general scenario can be realized in
practice in a nonequilibrium reaction network, we now introduce
generalizations of Frank’s model, in which we have multiplied
the number of chiral and achiral species, and we have assumed
an arbitrary assignation L or D to each enantiomer. We also
include reverse reactions in order to guarantee the compatibil-
ity with the existence of an equilibrium state, even though the
system is driven out of equilibrium. It is essential that the system
be driven out of equilibrium in order for chirality to be main-
tained. We, thus, assume that the system is thermodynamically
open, due to fluxes of matter in and out of the system.

Let us also suppose that species entering the autocatalytic
system are achiral, but of high free energy, while the achiral
species produced by the reactions involving the two D- and L-
enantiomers have a lower free energy. In this regard, the achiral
species {Aa}NA

a=1 are of high free energy, and the achiral species

{Ãa}
ÑÃ
a=1 of low free energy. The reaction networks are given by

the following reactions:

Aa + Ei 
Ej + Ek , [3]

Aa + Ēi 
 Ēj + Ēk , [4]

Ei + Ēj 
 Ãb + Ãc , [5]

where the enantiomer species are either Em = Dm and Ēm = Lm ,
or Em = Lm and Ēm = Dm for each enantiomeric pair m =

i , j , k = 1, 2, . . . ,NC; a = 1, 2, . . . ,NA; and b, c = 1, 2, . . . , ÑÃ.
Eqs. 3–5 define a total of 2NC−1 inequivalent reaction net-
works differing by the permutations of D- and L-enantiomers for
some enantiomeric pairs. For given reaction rates, all of these
networks manifest similar dynamical behaviors. Among them,
the network with Em = Dm and Ēm = Lm for all of the pairs
m = 1, 2, . . . ,NC is the direct generalization of Frank’s model,
considered below.

For our numerical implementation of this model, we focus
on the fully irreversible regime, in which reactions [3], [4], and
[5] only proceed forward due to the supply of achiral species
with high free energy at the same concentration A0. Thus,
there are two main control parameters in this model: the supply
concentration A0 and the residence time τ .

For one particular realization of these rate constants, Fig. 3A
shows the evolution of the concentrations of the species present
in the system as function of time above the threshold concentra-
tion A0, while Fig. 3B shows the case below threshold. In Fig. 3A,
we see that on long times, the system converges toward a steady
state, which is homogeneous and chiral. Only two species have
been shown in these figures for clarity, but the time evolution of
their concentrations is typical of the evolution of all of the other
species: On long times, only one enantiomer is present, which is
of the same chirality for all of the species, while the other enan-
tiomer reaches a vanishing concentration. Instead, in Fig. 3B,
all of the species converge on long times toward a vanishing
concentration.

The case where all of the rate constants would be identical can
be treated analytically, as done in SI Appendix, section S5, so let
us now instead assume that the rate constants k+ of reactions
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A B

Fig. 3. Dynamical simulations of the autocatalytic network [22]-[22]-[23]. Typical time evolution of two species contained in the autocatalytic network as
a function of time above the threshold concentration A0 (A) and below it (B) is shown. The solid lines represent one of the two enantiomers for a given
species and the dashed line the other enantiomer. Both simulations were carried out with an initial enantiomeric excess ε= 10−2, and concentrations of
all chiral species were initialized at D0 = 2 + ε and L0 = 2− ε. The unactivated achiral species was initialized at Ã0 = 0 and the activated one at A0 = 80 in
A and A0 = 45 in B. All of the constants k+ijk and k̃−ij follow a log-normal distribution of parameters µ=−10.02 and σ= 1.27 (i.e., corresponding to a

log-normal distribution with 〈k+〉= 〈k̃−〉= 10−4 and σk+
=σk̃−

= 2× 10−4), with k̃ij = k̃ji to satisfy the mirror symmetry described in SI Appendix, Eq.

S16. The number of chiral species was set up to NC = 20.

[3] and [4] are taken according to a log-normal distribution (26).
We find that the spontaneous chiral symmetry breaking happens
if the following criterion is satisfied,

〈k+〉 τ NA A0>
2

NC(NC + 1)
, [6]

i.e., the residence time multiplied by the total concentration
NA A0 of achiral species supplied to the system must exceed a
threshold determined by the average rate constant 〈k+〉 of auto-
catalysis and the number NC of chiral species in the reaction
network. We have tested this result by performing a linear sta-
bility analysis of the racemic steady state. Simulations show that
instability is due to an isolated top eigenvalue and confirm the
criterion [6] when the distribution of the rate constants is not too
broad, as shown in Fig. 4, Inset. For a very broad distribution,
the threshold is pushed toward higher value than predicted by
Eq. 6, but the transition still occurs at sufficiently large NC (SI
Appendix, Fig. S5). Importantly, the transition becomes sharp as
the number of chiral species increases, as shown in Fig. 4. Thus,
the random matrix theory argument holds, and mechanism (i) is
confirmed, although the eigenvalues of the Jacobian matrix do
not cover uniformly a circle (SI Appendix, Fig. S6) due to the
difference of statistics between the diagonal and the off-diagonal
elements (SI Appendix, section S5). In this case, mechanism (ii) is
found not to be relevant. Furthermore, the multiplication of chi-
ral species is also multiplying the number of reaction networks
manifesting similar chiral symmetry breaking, but with either the
D- or the L-enantiomer for the different chiral species.

Discussion
Let us now come back to our evaluation of the cross-over to
chirality in the context of the origin of life. First of all, we
observe that among the 20 natural amino acids, the only one
that is achiral—i.e., glycine—is also the smallest, containing only
five heavy atoms. Secondly, the first chiral molecule observed
in space is propylene oxide, containing four heavy atoms (27).
Thirdly, among the 11 carboxylic acids of the Krebs cycle, the

majority of them, 9, lie in the range between 8 and 13 heavy
atoms; only 2 of them are smaller, acetate and pyruvate. In
fact, the Krebs cycle appears to function precisely at the bor-
der between the world of achiral and small molecules and that

Fig. 4. Probability of instability of the racemic state for the generalized
Frank model [22]-[22]-[23]. Probability of the initial racemic state to be
unstable by mechanism (i) as a function of the normalized value of the con-
trol parameter A0 for the expanded Frank’s model in the irreversible regime
and for different values of number of chiral species NC: NC = 10 (magenta),
NC = 20 (red), NC = 30 (green), NC = 40 (yellow), and NC = 100 (blue). The
control parameter A0 has been normalized by the theoretical threshold at
the transition, defined by the equality in the inequality of Eq. 6. An aver-
age over 1,000 realizations of the rate constants following a log-normal
distribution such that 〈k+〉= 〈k̃−〉= 10−4 and σk+

=σk̃−
= 2× 10−4 has

been performed. (Inset) Comparison between the observed control param-
eter value A0 at the transition (red circles) with the theoretical prediction
given by Eq. 6 (blue solid line) after averaging over 100 realizations of the
rate constants.

4 of 6 | PNAS
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of large and chiral molecules (28). The emergence of the Krebs
cycle, thus, represents a major step, which facilitates the synthesis
of a large number of long chiral molecules (29).

We presented a scenario that explains why a large complex
molecular system tends to become chiral. Based on fundamental
properties of phase transitions, confirmed by numerical simula-
tions of a nonequilibrium reaction network, our scenario is both
general and robust. Details of the reaction network should not
matter, nor the precise way in which the system is driven out of
equilibrium, provided the system is large enough. In addition,
the homochiral state of our model does not need to be all D or
L across all species, in agreement with the observation that, for
instance, amino acids are L-chiral, but sugars are D-chiral. More-
over, our reaction scheme need not satisfy mass-action law, and
there is also no requirement that the system be fully well-mixed;
it could be compartmentalized. As an illustration of this idea, we
study two diffusively coupled chemical reactors, identical to the
one considered so far (SI Appendix, section S6). For low cou-
pling, the two compartments undergo separately the homochiral
transition, while at high coupling, they reach the same homochi-
ral state (13). Compartmentalized systems enrich the scenarios
for the transition to homochirality, because, on the one hand,
as shown recently, compartmentalization significantly broadens
the diversity of available autocatalytic networks, which can be
built with a limited number of compounds (30), and, on the
other hand, in such systems, the number of species is effectively
increased, which favors our mechanism.

Our scenario thus offers a universal pathway toward homochi-
rality potentially unifying many previous approaches on this
issue. In the context of the origin of life, we also find that there is
no need for very long and complex molecules for this homochiral
state to emerge. The transition can already occur in a prebiotic
world containing molecules with about 10 heavy atoms.

Materials and Methods
Chemoinformatics of Chirality. A study of the scaling of the number of chiral
and achiral species with the number of atoms for monosubstituted alkanes
and alkanes stereoisomers is provided in SI Appendix, section S1, together
with details on the chemoinformatic analysis of the PubChem database (20).

Chiral Symmetry Breaking for a General Reaction Scheme. The spontaneous
symmetry breaking of chirality can be described in the framework of kinet-
ics. The reaction network is supposed to involve achiral and chiral species at
the concentrations

c =

cD

cA

cL

, [7]

which, respectively, denote the concentrations of D-enantiomers, achiral
species, and L-enantiomers. If ND, NA, and NL denote the respective num-
bers of these species, the system is described in terms of NS = ND + NA +

NL = NA + 2NC concentrations with NC≡ND = NL.
In an open system, the time evolution of these concentrations is ruled by

the NS kinetic equations in Eq. 1 with F(c) = ν ·w(c), expressed in terms of
the matrix ν of stoichiometric coefficients, the set w(c) of net reaction rates
wr (c) = w+r (c)−w−r(c) with r = 1, 2, . . . , NR, the supply concentrations c0,
and the residence time τ of the species in the system. The system is closed if
the residence time is infinite, in which case the last term drops in Eq. 1.

The mirror symmetry of the system corresponds to the following
exchange of concentrations of D- and L-enantiomers,

Sc · c =

0 0 I
0 I 0
I 0 0

·
cD

cA

cL

=

cL

cA

cD

, [8]

written in terms of the NS×NS matrix, such that S2
c = I, where I denotes the

corresponding identity matrix. Since the rate constants take equal values for
mirror-symmetric reactions, the reaction rates have the symmetry

w(Sc · c) = Sw ·w(c), [9]

with some NR×NR matrix satisfying S2
w = I. As a consequence of the mir-

ror symmetry, the NS×NR matrix of stoichiometric coefficients obeys the
following symmetry relation

Sc · ν · Sw = ν. [10]

We note that the kinetic equations may also be written in the following
form,

dcD

dt
= FD(cD, cA, cL) +

1

τ
(cD0− cD), [11]

dcA

dt
= FA(cD, cA, cL) +

1

τ
(cA0− cA), [12]

dcL

dt
= FL(cD, cA, cL) +

1

τ
(cL0− cL), [13]

where the mirror symmetry is expressed as

FD(x, y, z) = FL(z, y, x) and FA(x, y, z) = FA(z, y, x). [14]

The symmetry can be explicitly broken by input concentrations, such that
Sc · c0 6= c0. However, the equations remain symmetric if the condition
Sc · c0 = c0 holds. In this case, the racemic mixture characterized by equal
concentrations of D- and L-enantiomers,

cD = cL, [15]

is maintained during the time evolution of the reaction network, if the
dynamics

dcA

dt
= FA(cD, cA, cD) +

1

τ
(cA0− cA), [16]

dcD

dt
= FD(cD, cA, cD) +

1

τ
(cD0− cD), [17]

is stable in the racemic subspace [15]. In order to investigate this issue, we
introduce the variables

x≡
1

2
(cL− cD), [18]

characterizing deviations with respect to the racemic subspace, and we per-
form the linear stability analysis for infinitesimal deviations δx with respect
to the racemic subspace. These deviations are ruled by the following set of
linear equations:

d

dt
δx =

(
JDD− JDL−

1

τ

)
· δx +

1

τ
δx0, [19]

where

JDD≡
∂FD

∂cD
=
∂FL

∂cL
and JDL≡

∂FD

∂cL
=
∂FL

∂cD
. [20]

Note that the chiral symmetry conditions, namely, Eq. 14, have been used
to derive these equations. We suppose that δx0 = 0, so that there is no
explicit symmetry breaking. Moreover, the dynamics in the racemic subspace
is assumed to have a steady state. We use the notations J = JDD− JDL and
M≡ J− I/τ . The NC×NC M matrix controls the linear stability of the racemic
steady state. It is asymptotically stable if all of the eigenvalues {λi} of that
matrix have a negative real part:<λi < 0 for all i = 1, 2, . . . , NC. The racemic
mixture is unstable if at least one of its eigenvalues has a positive real part.

Generalized Frank’s Model. For numerical investigations, we consider the
model [3]-[4]-[5] with Ei = Di and Ēi = Li for all i = 1, 2, . . . , NC in the irre-
versible regime with NA = ÑÃ = 1 and N≡NC� 1. Moreover, we suppose
that the initial concentrations Dm0 = Lm0 = Ã0 = 0 for all species m. Since
Dm0 = Lm0, there is no explicit chiral symmetry breaking caused by non-
racemic inflow from the environment. In this regime, the reaction network
reads

A + Di→Dj + Dk, [21]

A + Li→ Lj + Lk, [22]

Di + Lj→ 2 Ã, [23]

where i, j, k = 1, 2, . . . , NC.
Now, the net reaction rates are given by

w(D)
ijk = k+ijk A Di with j≤ k, [24]

w(L)
ijk = k+ijk A Li with j≤ k, [25]

w̃ij = k̃−ij Di Lj , [26]
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where k̃−ij = k̃−ji because of the mirror symmetry. Rate constants are ran-
domly distributed according to a log-normal distribution, as explained in SI
Appendix, section S4.

The kinetic equations thus have the following form,

Ȧ =−
∑

ijk
j≤k

w(D)
ijk −

∑
ijk

j≤k

w(L)
ijk +

1

τ
(A0−A), [27]

Ḋm =
∑

ijk
j≤k

νm,ijk w(D)
ijk −

∑
i

w̃mi −
1

τ
Dm, [28]

L̇m =
∑

ijk
j≤k

νm,ijk w(L)
ijk −

∑
i

w̃im−
1

τ
Lm, [29]

˙̃A = 2
∑

ij

w̃ij −
1

τ
Ã, [30]

with νm,ijk ≡−δmi + δmj + δmk.

Numerical Simulations of the Reaction Network. The above equations for the
fully irreversible model have been simulated using a Runge–Kutta algorithm
of second order. The numerical integration of the kinetic equations has been
performed by setting τ = 1, meaning that we take τ as the time unit. At the
initial time, we assume that there is a very small imbalance between the two
enantiomers of given species, characterized by the small parameter ε, which
is homogeneous among all of the species.

The integration of the ordinary differential equations allows us to
determine the threshold of instability, as well as every asymptotically sta-
ble solution—in particular, the racemic solution with Di = Li below the

threshold of instability. This threshold can be determined by increas-
ing the control parameter A0 until the solution of the equations is no
longer racemic, giving the critical value of the threshold A0c for the
transition-breaking chiral symmetry inside the system.

With this dynamics, we observe that the system never converges toward
a nontrivial racemic state, where the concentrations of the two enantiomers
of a given species would be nonzero and equal to each other. Thus, start-
ing with a state with a small enantiomeric excess, we either reach the trivial
racemic state or a homochiral state. For this reason, Fig. 4 has been made by
studying the stability of the trivial racemic state using many random realiza-
tions of the rate constants k+ijk following a log-normal distribution, which
is more efficient numerically than a time integration of the equations of
motion.

Further Materials. In SI Appendix, section S2, we study the properties of
the Jacobian matrix and deduce from them in SI Appendix, section S3 a
general instability criterion of the racemic state based on random matrix
theory. In SI Appendix, section S4, we present the reversible generalized
Frank model, and we analyze its properties for uniform rate constants. In
SI Appendix, section S5, we derive the instability criterion for the general-
ized Frank model with random rate constants. In SI Appendix, section S6, we
study two diffusively coupled compartments.

Data Availability. Codes have been deposited in GitHub (https://github.com/
gablaurent/homochirality).
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