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Cosmological Lower Bound on the Higgs-Boson Mass
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Cosmological considerations imply that the Weinberg-Salam Higgs boson mass ~H
&9 QeV. If this bound were violated, the symmetry-breaking phase transition would
occur only after extreme supercooling, resulting in too high a ratio of entropy to baryon
number.
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and M is an arbitrary mass related to A. by

8 V
4 =A.

The first term in B represents the contribution of
gauge-boson loops, while the second arises from
loops involving fermions with Yukawa couplings

f, . Since the Yukawa coupling is proportional to
the fermion mass, the latter term is nonnegligi-
ble only if there are quarks or leptons much more
massive than those so far discovered. The con-
tribution from scalar loops is negligible for the
case in which we are interested and has been

The Weinberg-Salam theory of weak and elec-
tromagnetic interactions contains one parameter
which is not yet experimentally determined the
mass of the Higgs boson. Some time ago it was
noted that when this mass is sufficiently small
the scalar self-coupling is weak enough for the
radiative corrections to the effective potential to
have a significant effect. ' In the one-loop approx-
imation the effective potential takes the form'

It'= —,'t 'p'+(X/4!)q'+By4[ln(y'/M') -~85], (1)

where

omitted. Assuming that there are no heavy fer-
mions and taking sin'6~=0. 23, one finds B=1.74
X].0 4.

For sufficiently small X, V has a minimum at a
nonzero value of y, which we denote by o. [Ex-
perimently, o=(&2G) ' '=246 GeV. ] By choos-
ing M= o', we may rewrite Eq. (1) in the form

P=B[2oo'qP —,'(n+ 2)—p'+y'ln(p'/o')]. (4)

1(y) = f, d~ ~' ln/ I —exp [-(~'+ y')' t'] ] . (6)

The Higgs mass is then given by m„'= (4 —t). )
x (2Bo'). lf o. )0, the effective potential has an
additional minimum at y =0. In order that the
symmetry-breaking state y= 0 be the absolute
minimum, we must require that n & 2; this gives
the lower bound on m„obtained by Weinberg. ' In
this paper we will consider the case (0 &o. &2) in
which there is a metastable SU(2) @U(1)-symmet-
ric vacuum, and show that cosmological consid-
erations imply a lower bound corresponding to
0. =0.

We assume that the universe was at one time
very hot ( T» o). At such temperatures p must
be modified" by the addition of a term

V~=2 T' 2I(2 ) +1()g'+5")'~'2 ), (5)

where
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0 = (8'/8 t + V') p —II V/8 p (8)

with the boundary condition that y approach 0 as
z'+ t' goes to infinity. The probability per unit
time per unit volume of bubble nucleation is given
by f, = C exp(-A, ), where A, is the four-dimen-
sional Euclidean action corresponding to the tun-
neling of Eq. (8) with the least action, which is
O(4) symmetric. ' The determination of C re-
quires calculation of radiative corrections; it is
of the form y 0', with y a dimensionless number
expected to be of order unity. ' Solving Eq. (8) by
computer gives the values of Ap shown in Fig. 1.

(The contribution from scalar loops is again neg-
ligible and has been omitted. We have also ne-
glected all fermion-loop contributions. ) From
the approximation

Vr = ——,', m'T'+ —,', (g"+ 3g') T'P'+ O(TP'), (7)

valid for T»y, it is clear that at T»0 the min-
imum at y= v disappears. Thus, a hot universe
would begin in an SU(2) SU(1) symmetric phase.
As it cooled, there would be a transition to the
spontaneously broken phase, with the critical
temperature T, being that at which the values of
the effective potential at the two minima are
equal. One finds T, =k(o. )(2 —o.)'~~a, where k(n)
varies monotonically from 0.081 to 0.087 as e
varies from 2 to 0. The phase transition is first
order and would proceed by the formation and
growth of bubbles of the new phase. During this
process the expansion of the universe would cause
the temperature to continue to fall, eventually
rising again with the release of the latent heat of
the phase transition.

The formation of bubbles of true vacuum is a
tunneling process. Callan and Coleman' have
shown that its rate at zero temperature can be
obtained by solving the Euclidean equation

The extension of this calculation to finite tem-
perature requires some modifications. First,
must be replaced by the finite-temperature effec-
tive potential. Second, the Euclidean problem be-
comes one with periodicity 1/T in imaginary time,
and so we can only require O(3) rather than O(4)
symmetry. For large T we expect the dominant
solution to be independent of t with an exponent
of the form A(T) =E(T)/T, where E is the energy
calculated using the finite-temperature effective
potential. " The behavior of E(T)/T as a func-
tion of T and n is shown in Fig. 2. For suffi-
ciently small T solutions with approximate O(4)
symmetry and Q Ap will dominate.

We see that nearly all choices of o. in the range
we are considering lead to extremely small bub-
ble-nucleation rates and thus to a rather lone
lifetime for the metastable symmetric state. It
has been argued' that this lifetime must be short
compared to 10"yr (the generally accepted age
of the universe), but this reasoning seems rather
imprecise. The figure of -10' yr is obtained by
assuming adiabatic expansion throughout the his-
tory of the universe and so cannot be used to
place a limit on how long the universe could have
remained in a metastable state. " However, the
continued expansion of the universe would lead to
a supercooling which could have observable con-
sequences. Current theories show that the pres-
ent baryon number to entropy ratio of -10 ' can
be explained as a relic of CP- and baryon-num-
ber-nonconserving processes at energies of the
order of 10"GeV." If at some time after the
baryon-number excess was produced the universe
supercooled to a temperature T „and then rose
to T„,(of order T,) after the release of the la-
tent heat, the baryon number to entropy ratio
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FIG. 1. Ao as a function of ~.

FIG. 2. (a) E(T)/T as a function of temperature for
several values of &. (b) E(T")/T* as a function of 0,'.
T* is the temperature at which E(T)/T reaches its
minimum value.
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would have been reduced by a factor of (T„,/
T„)'. Thus the observed baryon number excess
puts a bound on how much supercooling is accept-
able; certainly T„cannot be more than two or
three orders of magnitude below T, . We shall
see that such extreme supercooling is quite pos-
sible in a rapidly expanding universe.

The extent of supereooling depends on the rate
of expansion of the universe. With a Robertson-
Walker metric (in comoving coordinates) d7'
=dt'-8'(t)dx', the expansion is governed by the
equation"

(Z/Z)' = (8m/3 m, ')p, (9)

where Mp = 1.2 & 10"GeV is the Planck mass.
The energy density may be written as p = p, + (n'/
30}ZT'. Here Jt is the number of effectively
massless degrees of freedom, with fermion de-
grees of freedom each counting —,'; for three fam-
ilies of leptons and quarks, %=106.75. The vac-
uum energy density has the same effect as a cos-
mological constant; to agree with observation we
must take p, =0 for the spontaneously broken min-

imum and, therefore, p, = —,(2 —n)Bd' for the
symmetric state. Note that for small tempera-
tures [T&0.033(2 —o. )'~4o] the energy density is
dominated by the vacuum energy, leading to an
R which grows exponentially with time.

If f(t) is the rate of bubble nucleation per unit
time per unit (physical) volume, the fraction of
space remaining in the symmetric phase t is '

p(t) = exp[- f, dt, f(f,}A'(t,,)V(t„t)], (10)

where

(12)
( 8 ~p /M 2)1/2

v(t„~) =~~[j dt, z '(t,)]' (11)

is the coordinate volume at time ~ of a bubble
formed at time t,. (The bubbles are formed with
a negligible initial radius and expand with a speed
which rapidly approaches that of light. ) It is con-
venient to convert from time to temperature. If
we assume adiabatic expansion (RT =const), then
Eq. (9) leads to

T =-XTg(T)

(14)

4

exp[-A(T, )] r~ dT, '
p(T) =e

4I4-pp dT4 (T )T
4' (13)

gTg Tg z gT2

with b =~~ vyo~/y~. Numerically, b= 01'~/( 2—a)'. As T falls from T„A(T) decreases to a minimum at
a temperature T and then rises, leveling off at Ao. The potentially dominant contributions to the T,

. integral in Eq. (13) come from the regions T~= T* and T,=0 ~ Approximating the integral by the sum
of these gives (for T & T *)

Manse ""*' T+-T ' T,
p(T)=expI Pe( „( ))4„— +exp(-A/le

where h is a correction factor of order unity.
Thus, if A(T*) &lnb, p(T) decreases rapidly to 0
and supercooling ceases by T= T*. On the other
hand, if A(T*) & lnb, the bubbles formed at high
temperature are not sufficient to complete the
phase transition and supercooling ceases only
when the effect of the low-temperature bubbles
becomes large; since this effect grows only loga-
rithmically, supercooling will continue to exceed-
ingly small temperatures.

Therefore, to avoid excessive supercooling we
must require (1) that A(T) &lnb for some T and,
(2) that the temperature at which this happens be
not too far below the critical temperature (cer-
tainly no less than 10 ' T,). The first condition
alone excludes essentially the entire range of pa-
rameters in which we are interested; even for n
as small as 0.01, A.(T*) is too large by a factor
of 7. The second requirement eliminates even

the theoretically attractive case'~ u =0; the uni-
verse would supercool to T=3&10 ' T, before
A(T) = inb.

We have implicitly assumed that the effective
potential (1) with its finite-temperature correc-
tions continues to give a good description of the
relevant physics as the temperature decreases
several orders of magnitude below the critical
temperature. Witten" has suggested that this
may not be the case if in this temperature range
the universe undergoes a phase transition from
unbroken chiral symmetry. He argues that the
effect of the broken chiral symmetry would be to
facilitate the Weinberg-Salam phase transition,
and that n =0 may not in fact be ruled out. Ex-
cept for very small n (no more than 0.01), our
arguments and conclusions concerning positive a
would not be affected.
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Although the data shown in Figs. 1 and 2 were
obtained with use of sin'0~=0. 23, variation of 0~
well beyond the present experimental uncertainty
has little effect. For 0.13 & sin 0~ &0.91, the
qualitative conclusions are unchanged. Also, it
is easy to show that the effect of heavy-fermion
loops, which we have omitted, would be to fur-
ther inhibit bubble formation.

We thus have a lower bound for the Higgs mass

IH a 8Bv2,

with B given by Eq. (2). For sin'6tw =0.23 and no
heavy fermions, this gives IH

) 9 GeV.
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