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It is possible for a classical field theory to have two homogeneous stable equilibrium states with different

energy densities. In the quantum version of the theory, the state of higher energy density becomes unstable

through barrier penetration; it is a false vacuum. This is the first of two papers developing the qualitative and
quantitative semiclassical theory of the decay of such a false vacuum for theories of a single scalar field with
nonderivative interactions. In the limit of vanishing energy density between the two ground states, it is

possible to obtain explicit expressions for the relevant quantities to leading order in h; in the more general
case, the problem can be reduced to solving a single nonlinear ordinary differential equation.

I. INTRODUCTION

Consider the quantum field theory of a single
scalar field in four-dimensional space-time with
nonderivative interactions'

& =2s„48"0 —~(4) .
Let V poss|lss two relative minima, Q„only one
of which, Q, is an absolute minimum (see Fig.
1). The state of the classical field theory for
which P =P is the unique classical state of lowest
energy, and, at least in perturbation theory, cor-
responds to the unique vacuum state of the quan-
tum theory. The state of the classical field theory
for which Q = P, is a stable classical equilibrium
state. However, it is rendered unstable by quan-
tum effects, in particular, by barrier penetration.
It is a false vacuum. This is the first of two pa-
pers developing the quantitative theory of the de-
cay of such false vacuums; the second will be
written with Curtis Callan. '

(To my knowledge, the first attempt to develop
such a quantitative theory is the beautiful paper of
Voloshin, Kobzarev, and Okun. ' At many points
the theory developed here duplicates their con-
clusions; however, there are significant disagree-
ments. I have chosen to write a self-contained
description of the theory in this paper, and to dis-
cuss the similarities and differences with the work
of Voloshin et aL in an appendix. )

The qualitative features of such decay processes
have long been understood. ' They closely parallel
the nucleation processes of statistical physics,
the crystallization of a supersaturated solution
or the boiling of a superheated fluid. Imagine Fig.
1 to be a plot of the free energy of a fluid as a
function of density. The false vacuum corresponds
to the superheated fluid phase and the true vacuum
to the vapor phas e. Thermodynamic fluctuations
are continually causing bubbles of the vapor- phase
to materialize in the fluid phase. If the bubble is
too small, the gain in volume energy caused by

the materialization of the bubble is more than
compensated for by the loss in surface energy,
and the bubble shrinks to nothing. However, once
in a while, a bubble is formed large enough so that
it is energetically favorable for the bubble to grow.
Once this occurs, the bubble expands until it con-
verts the available fluid to vapor.

An identical picture describes the decay of the
false vacuum, with quantum fluctuations replacing
thermodynamic ones. Once in a while, a bubble
of true vacuum will form large enough so that it
is classically energetically favorable for the bub-
ble to grow. Once this happens, the bubble
spreads throughout the universe converting false
vacuum to true.

Thus the thing to compute is the probability of
decay of the false vacuum per unit time per unit
volume, I"/V. Of course, such a computation
would be bootless were it not for cosmology. An
infinitely old universe must be in a true vacuum,
no matter how slowly the false vacuum decays.
However, the universe is not infinitely old. At
the time of the big bang, the energy per unit vol-
ume was very high, and the state of the universe
was very far from any vacuum, true or false. As
the universe expanded and cooled down, it might
well have settled into a false vacuum instead of a
true one. The relevant parameter for describing
future events is that cosmic time for which the
product of I'/V and the four-volume of the past
light cone becomes of order unity. If this time is
on the order of milliseconds, the universe is still

FIG. 1. The nonderivative part of the Lagrangian,
U($), for a theory with a false vacuum.
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hot when the false vacuum decays, even on
the scale of high-energy physics, and the
zero-temperature computation of I'/V is in-
applicable. If this time is on the order of years,
the decay of the false vacuum will lead to a sort
of secondary big bang with interesting cosmolog-
ical consequences. If this time is on the order of
10' yr, we have occasion for anxiety.

As we shall see, the expression for I /V is of
the form

I /V =Ac-""[I+O(a)], (1.2)

where' and B depend on the theory under study.
This paper deals exclusively with the theory of the
coefficient B; the theory of A is somewhat more
complicated and will be dealt with in the second
paper.

Section II discusses the general formalism for
studying barrier-penetration effects in field
theory. The discussion is on a heuristic level;
the formalism will be more carefully founded in
the second paper. Section III applies this form-
alism to a scalar field theory with nonderivative
interactions. Even though we are dealing with
barrier penetration in a system with an in-
finite number of degrees of freedom, the
coefficient B can be expressed in terms of
the solution of a single ordinary differential
equation. Section IV solves this equation in the
limit of a small energy-density difference be-
tween the two vacuums. Section V discusses the
evolution of the bubble of true vacuum after it
materializes.

semiclassical language (a good approximate des-
cription for small h), the particle penetrates the
potential barrier and materializes at the escape
point, o, with zero kinetic energy, after which it
propagates classically. The width associated with
this process is given by an expression of the form

I' =Re ~"[I +0(5)],
where

(2.2)

dq(2V)" . (2.3)

Just as in one dimension, V is assumed to have a
local minimum at some point, q„and the zero of
the energy is chosen such that V(q, ) vanishes. Of

course, v, the single other zero of V in the one-
dimensional case, is replaced by a surface of
zeros, Z. According to Banks, Bender, and Wu,

B=2 ds 2V' ',
qo

(2.5)

where

(ds)'=+* dtl, (2.6)

o is some point on Z, and the integral is over that
path for which B is a minimum,

eo

To my knowledge, the generalization of this des-
cription to a particle moving in many dimensions
was first given by Banks, Bender, and Wu. ' We
assemble the coordinates of the particle into a
vector, g. The Lagrangian is

L =-,' q q —V(|I) . (2.4)

II. BARRIER PENETRATION IN MANY DIMENSIONS
ds (2V)'~'= 0. (2.7)

Consider a particle of unit mass moving in one
dimension,

I =2~'-V(q), (2.1)

where the potential, V, is as sketched in Fig. 2.
(Note that I have chosen the zero of energy such
that the point of classical stable equilibrium, q„
is a zero of V. ) As we all know, there is no quan-
tum-mechanical stable equilibrium state corre-
sponding to the classical stable equilibrium. In

5 ds 2 E —p '~2=0, (2.8)

That is to say, the particle penetrates the barrier
along the path of least resistance. After penetra-
ting the barrier, the particle emerges at o with
zero kinetic energy and propagates classically.

It will be convenient to cast these formulas in
another form more convenient for our purposes.
It is well known that the solutions to the variation-
al problem

with fixed end points, are the paths in configura-
tion space traced out by solutions to the Euler-
Lagrange equations

I

qo

FIG. 2. V(q), the potential for a particle theory with
a false ground state.

d |I sV
dt2 aq

with

1 Q
2 dt

' dt

(2.9)

(2.10)
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(2.11)

with

1 dq df|
2d 67

(2.12)

Note that Eq. (2.11) is the imaginary-time version
of Eq. (2.9); it is obtained by the formal substi-
tution 7 =it. It is the Euler-I agrange equation for
the imaginary-time version of Hamilton's prin-
ciple,

)
5 drL~=0, (2.13)

1 dqL~= — ~ +V . (2.14)

The va, riational problem (2.7) is of precisely this
form except that E is zero, the sign of V is re-
versed, and the end point o is not fixed but is free
to vary along the surface Z. For the moment, let
us ignore this last point and fix 0. Then the sol-
utions to (2.7) are the paths in configuration space
traced out by the solutions to the differential eq-
uation

v =+~. Thus I call this motion "the bounce. " The
coefficient B is the total Euclidean action for the
bounce,

B= dv L~=—S~ .
~ oo

(2.18)

Thus, to find the coefficient B, we need only find
the bounce, the solution of the imaginary-time
equations of motion obeying the boundary condi-
tions (2.15) and (2.16). [Equation (2.12) is a con-
sequence of the equations of motion and Eq. (2.15).]
This simple prescription needs three qualifying
comments: (1}The bounce must really reach the
surface Z at v =0, that is to say, a position from
which a classical particle, released at rest, can
escape to infinity. Thus the trivial solution to the
equations, constant g, is not allowed. (2) There
may be several bounces; in this case, the pre-
ferred bounce is the one of minimum Euclidean
action. (3) There may even be many bounces with
the same Euclidean action. (Typically, we expect
this to occur as a consequence of some symmetry
of the theory. } In this case, we must sum the con-
tributions to I' of all these bounces (integrate over
the symmetry group); of course, this only affects
the coeff icient A.

11111
7'~ ~ oo

(2.15)

Qy time translation invariance, we might as well
choose the imaginary time at which the particle
reaches o to be 7. =0. At this time, again by Eq.
(2.12), dq jdT vanishes:

(The subscript E stands for "Euclidean. " In field
theory, the passage from real to imaginary time
takes us from Minkowski space to Euclidean
space. )

By Eq. (2.12) the classical equilibrium point, q„
can only be reached asymptotically, as v goes to
minus infinity,

III. BARRIER PENETRATION IN FIELD THEORY

82
, +V') Q =U'(g), (3.1)

where the prime denotes differentiation with re-
spect to Q, the boundary conditions for the bounce
are

lim P(7, x) = Q+, (3.2)

It is the work of a moment to translate the pre-
scription of the preceding section to the field-
theory problem described in the Introduction: The
Euclidean (imaginary-time) equation of motion is

d
dg'

Yet again by Eq. (2.12),

p

ds (2y)'~' =

(2.16)

(2.17)

(O, x) =0.
BT

The coefficient B is given by

(3.3)

gp

By Eq. (2.16), the variation of this expression
with respect to changes in the end point o van-
ishes; thus the condition imposed' at the beginning
of the preceding paragraph, that a is fixed, can
be dropped.

Equation (2.16) also tells us that the motion of
the particle for positive ~ is just the time re-
versal of its motion for negative v; the particle
simply bounces off Z at v =0 and returns to q, at

1 84 1B=Ss= dTd x — ~ +—(VQ) +U
2 8 T 2

(3.4)

1im P(1, x) = (f&, .
lx l~ (3.5)

This last conditionis also consistent with the
qualitative description of vacuum decay given in

Finally, it is easy to see that for B to be finite it
is necessary that
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p =("+ix I2)'" (3.6)
I

then the assumption is that Q is a function of p
only.

Under this assumption, Eq. (3.1) becomes

d (f) 3 dQ,
( )

dp p dp
(3.7}

the Introduction: Quantum fluctuations make a
bubble appear someplace; far from this place, the
false vacuum persists undisturbed.

No nontrivial solution of these equations is in-
variant under spatial translations. Thus, any
spatial translation of a solution is also a solution,
with the same Euclidean action, and to obtain the
total width of the false vacuum we must integrate
over the group of spatial translations, as ex-
plained at the end of Sec. II. This is the formal
reason why a fat'tor of the volume of space nec-
essarily appears in the expression f6r the total
width, Eq. (1.2); the physical reason was explain-
ed in the Introduction.

It is not difficult to guess the form of the sol-
ution of these equations, for they are all consis-
tent with the assumption that Q is invariant under
four-dimensional Euclidean rotations. To be pre-
cise, if we define p by

(3.11)

To demonstrate overshoot requires a little more
work. For &f& very close to P we may safely
linearize Eq. (3.7):

(
d' 3
—. +- —p' (0-4 )=o,

dp p
(3.12)

efficient inversely proportional to the time. The
particle is released at rest at time zero [Eq.
(3.10)]; we wish to show that if the initial position
is properly chosen, the particle will come to rest
at time infinity at Q„ that is to say, on top of the
right-hand hill in Fig. 3.

I shall demonstrate this by showing that if the
particle is released to the right of Q, and is suf-
ficiently close to P, it will overshoot and pass
g, at some finite time; on the other hand, if it is
released sufficiently far to the right of P, it will
undershoot and never reach p+, thus, by continu-
ity, there must be an intermediate initial position
for which it just comes to rest at Q+.

To demonstrate undershoot is trivial. If the
particle is released to the right of Q„ it does not
have enough energy to climb the hill to P, . The
viscous damping force does not affect this argu-
ment, because viscous damping always diminishes
the energy:

Eqs. (3.2) and (3.5) become a single equation,

lim P(p) = Q, ,
p ~ oo

and Eq. (3.4) becomes

(3.8)
where

Tbe solution to Eq. (3.12) is

4(P) —0 =2le(0) —0 )f,(PP)IPP

(3.13)

(3.14)

B=S~= 27t' P'dP
2 d

+ 0"s
0 2 dp

(3.9)

=0.dP
dp 0

(3.10)

Otherwise, p would be singular at the origin of
coordinates.

I will shortly analyze Eqs. (3.7)-(3.10) and show
that they always have a solution, that is to say,
that the system always admits an O(4)-invariant
bounce. I will assume that if there are any O(4}-
noninvariant bounces, they have higher Euclidean
action than the O(4)-invariant bounce, and thus
can be safely ignored (Note a.dded in Proof. I re-
cently proved this assumption; the proof will ap-
pear in a Physical Review Comment. )

Now for the analysis: If we interpret p as a
particle position and P as time, Eq. (3.9) is the
mechanical equation for a particle moving in a
potential minus U and subject to a somewhat pecu-
liar viscous damping force with Stokes's-law co-

Thus, if we choose Q to be initially sufficiently
close to Q, we can arrange for it to stay arbi-
trarily close to Q for arbitrarily large p. But
for sufficiently large p, the viscous damping force
can be neglected, since its coefficient is inversely
proportional to p. But if we neglect the viscous
damping, tbe particle overshoots. Q. E.D.

IV. THE THIN-WALL APPROXIMATION

I.et us consider a symmetric function of Q,
U, (e),

U, (4)= U. (-4), (4.1)

FIG. 3. The potential energy for the mechanical analo-
gy to Eq. {3.7).
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with minima at some points +a,

U,'(+a) =0 .

Also, let us define

p.
' = U,"(aa) .

For .example, a function of this form is

(4.2)

(4.3)

(4.8)

For this solution, the one-dimensional action is
given by

S = dx
1 d

+U

U 2 (4.4) dy[2U(y)]1/2
-a

(4.9)

E'

U= U, +—(Q -a), (4.5)

For this example, a'= p, '/&.
Now let us add to U, a small term that breaks

the symmetry,

For prxl »
(4.10)

where K is a constant which depends on the de-
tailed form of U, . For example, for the theory
defined by Eq. (4.4),

where e is a positive number. This now defines
a theory of the class we have been discussing; to
lowest nontrivial order in e,

Q, = a tanh(-,' px),

S, = p, '/3X,
(4.11)

(4.12)

(f& ~
= +a, (4.6)

and e is the energy-density difference between the
true and false vacuums.

I shall now show that in the limit of small c it is
possible to compute the coefficient B in closed
form. From the arguments of Sec. III, it is easy
to see the qualitative form of the bounce for small

In order not to lose too much energy, we must
choose $(0), the initial position of the particle in
our mechanical analogy, very close to &f& . The
particle then stays close to P until some very
large time, p=R. Near time R, the particle
moves quickly through the valley in Fig. 3, and
slowly comes to rest at Q, at time infinity. Trans-
lating from mechanical language back into field-
theoretic language, the bounce looks like a large
four-dimensional spherical bubble of radius R,
with a thin wall separating the false vacuum with-
out from the true vacuum within.

To go on, we need more information about the
wall of the bubble. For p near R, we can neglect
the viscous damping term in Eq. (3.7), and we can
also neglect the e-dependent term in U. We thus
obtain the familiar equation for what is sometimes
called a soliton in a one-dimensional field theory,

K =2a. (4.13)

ln terms of Q„we can express analytically our
approximate description of the bounce,

Q=-a, p«R
= Q, (p -R), p=R

=a, p»R.
(4.14)

The only thing missing from this description is
the value of R. This is easily obtained by a vari-
ational computation:

1 dQ'
S = 271' p3dp ——+ U

yo 2 dp

=-p 71'R &+ m'R S (4.15)

dSg@ =Q= 2p2R3q+ 6p2R2S (4.16)

Hence,

R=3S,/;. (4.17)

(The first term comes from the interior of the
bubble, the second term from the walL) Varying
with respect to R, we obtain

d2@
dx2

= U~(Q), (4 7)
Note that, consistent with our qualitative picture,
R does indeed go to infinity as & goes to zero. We
can use Eq. (4.17) to give a more precise condition
for the validity of our approximation,

where x is the spatial variable in the one-dimen-
sional t.heo ry.

The properties of this equation have been ex-
tensively discussed in the recent literature, ' and
I will simply summarize them here. The funda-
mental solution is an odd function of x, P, (x), de-
fined by

p,R = 3S,p, lz» 1 .
We can also use it to compute

B=Ss = 27''S,~/2g'.

(4.18)

(4.19)

This is the desired closed-form expression for the
coefficient J3 in the limit of small &.
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For the example of Eq. (4.4), the condition for
the validity of the approximation is

p, '/- Z)) 1,
and the approximate expression for J3 is

2 12

6~ 3'

(4.20)

(4.2].)

p(t=0, x) = P(&=0,x),
a—g(t=0, x)=0.
et

(5.1)

(5.2)

Afterwards, it evolves according to the classical
field equation,

(5 3)

V. THE FATE OF THE FALSE VACUUM

In Sec. II, I gave the semiclassical description
of the decay of a false ground state in particle
mechanics: The classical particle makes a quan-
tum jump from the local minimum of the potential
to the escape point, q(7 =0). When it appears at
the escape point, its momentum, q, is zero.
Afterwards, it propagates classically.

Mutatis mutandem, this description applies to
field theory; The classical field makes a quantum
jump (say at t=0) to the state defined by

(5.5)

(This situation is shown graphically in Fig. 4.)
Typically, we would expect R to be a microphysi-
cal number, on the order of a fermi, give or take
a few orders of magnitude. This means that by
macrophysical standards, once the bubble mater-
ializes it begins to expand almost instantly with
almost the velocity of light.

(3} As a consequence of this rapid expansion, if
a bubble were expanding toward us at this moment,
we would have essentially no warning of its ap-
proach until its arrival. This is also shown in Fig.
4. The stationary observer, 0, cannot tell a bub-
ble has formed until he intercepts the future light
cone, W, projected from the wall at the time of its
formation. A time R later, that is to say, on the
order of 10"sec later, he is inside the bubble.

(4) The rapidity expanding bubble wall obviously
carries a lot of energy. How much? A section of
bubble wall at rest carries energy S, per unit area.
Because any part of the bubble wall at any time is
obtained from any other part by a Lorentz trans-
formation, a section of wall expanding with velo-
city v carries energy S,(1—v') 'hperunitarea.
Thus, at a time when the radius of the bubble is
~x ~, the energy of the wall is given by

(5.6)
The first of these equations implies that the

same function, Q(p), that gives the shape of the
bounce in four-dimensional Euclidean space
also gives the shape of the bubble at the
moment of its materialization in ordinary
three-space. Indeed, it does more; because the
Minkowskian field equation, (5.3), is simply the
analytic continuation of the Euclidean field equa-
tion, (3.1), back to real time, the desired solu-
tion of Eq. (5.3) is simply the analytic continuation
of the bounce:

By Eq. (5.5),

dlxl (Ixl' —R )' '
dt lxi

Thus,

E„„,=4 I I S,/R =4 g[x['/3,

(5.7)

(5.8)

(5.4)

[As a consequence of Eq. (3.3), &f& is an even func-
tion of p, so we need not worry about which branch
of the square root to take. ]

We can immediately draw some very interesting
consequences from Eq. (4.4}:

(1) O(4) invariance of the bounce becomes O(3, 1)
invariance of the solution of the classical field
equations. In other words, the growth of the bub-
ble, after its materialization, looks the same to
any Lorentz observer.

(2} In the case of small q, discussed in Sec. IV,
there is a thin wall, localized at p=R, separating
false vacuum from true vacuum. As the bubble
expands, this wall traces out the hyperboloid

fx[

FIG. 4. A space-time diagram of the classical growth
of the bubble of true vacuum after its materialization.
The hyperbola is the path traced out by the bubble wall.
The observer 0 only receives warning that the bubble
is expanding toward him when he crosses the light cone
W.



FATE OF THE FALSE VACUUM: SEMICLASSICAL THEORY 2935

where I have used Eq. (4.17) at the last step. Thus,
in the thin-wall approximation, all the energy re-
leased by converting true vacuum to false vacuum
goes to accelerate the bubble wall. This refutes
the naive expectation that the decay of the false
vacuum would leave behind it a roiling sea of me-
sons. In fact, the expansion of the bubble leaves
behind only the "true vacuum.

This concludes what I know about the fate of the
false vacuum. There remain many interesting
unanswered questions:

(1) I have discussed the expansion of a bubble
of true vacuum into false vacuum. What if the
initial state of the world is not the false vacuum,
but some state of nonzero particle density built
on the false vacuum? What happens when a bubble
wall encounters a particle?

(2) I have discussed spontaneous decay of the
false vacuum. However, there is also the possi-
bility of induced decay. In particular, in a colli-
sion of two particles of very high energy, there
might be a non-negligible cross section for the
production of a bubble. How can one estimate this
cross section?

(3) If we assume that the universe starts out in
a false vacuum, at some time in its expansion
bubbles begin to form. Because the formation of
bubbles is totally Lorentz invariant, the average
distance between bubbles at their time of forma-
tion must be of the same order of magnitude as
the time at which bubbles begin to appear. Be-
cause bubble walls expand with the speed of light,
after a time interval of the same order of magni-
tude, bubble walls begin to collide. What happens
then'? Can such events be accommodated in the
history of the early universe?
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APPENDIX: COMPARISON WITH EARLIER WORK

Qoloshin, Kobzarev, and Qkun' consider the case
when the energy-density difference between the
two vacuums is small. They assume that the only
relevant field configurations are those correspond-
ing to a spherical bubble of true vacuum separated
from false vacuum by a thin wall whose shape is
given by the function I call Q, . They insert this
ansatz into the Lagrangian of the theory and obtain
an effective Lagrangian depending only on a single
dynamical variable, the radius of the bubble as a
function of time. This they quantize by the stand-
ard canonical method, giving them a one-dimen-
sional Hamiltonian which they analyze by the
usual methods of one-dimensional quantum mech-
anics to obtain the coefficient I call B. Since all
of their assumptions appear as conclusions in this
paper, it is no surprise that their formula for B
agrees with my Eci. (4.19).

The only advantages I claim for the method pre-
sented here are these: (1) I believe I work with
fewer assumptions and thus that my derivation is
more convincing. The reader may well disagree.
(2) The method presented here is more suited to
the computation of the next quantum corrections.
The forthcoming second paper on this subject will
attempt to justify this claim. (3) The method of
Voloshin et al. obscures the Lorentz structure of
the theory and this causes them to go astray at one
important point. (Or so I believe; it is possible
that it is my methods that have caused me to go
astray. At any rate, we disagree. ) They argue
that they have computed only the probability for
the production of a bubble at rest. By Lorentz in-
variance, the probability for the production of a
bubble in motion must be the same, and thus to
obtain the total decay width of the false vacuum it
is necessary to integrate over the Lorentz group.
Such an integration is, of course, divergent; in
order to eliminate the divergence, Voloshin et al.
have to introduce an ad hoc cutoff, related to the
radius of the universe. I hold otherwise. As I
argued in Sec. 7, an expanding bubble looks the
same to all Lorentz observers, and to integrate
over the Lorentz group is to erroneously count the
same final state many times.

*Work supported in part by the National Science Founda-
tion under Grant No. PHY 75-2047.

Notation: Units are chosen such that c=l. The sig-
nature of the metric tensor is (+- —-). Note Planck's
constant is not set equal to one.

These papers are those cited in Ref. 2 of P. H. Framp-

ton [Phys. Hev. Lett. 37, 1378 (1976)]. Frampton at-
tempts to apply the methods developed here to the prob-
lem of vacuum instability in a Weinberg-Salam model.
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