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The possible utility of spinor representations of large orthogonal internal-symmetry groups is explored. The

repetitive structure of families is incorporated quite naturally, but there is a difficulty with extra "conjugate"

families having V + A weak currents. Possible methods for removing these conjugate families from the low-energy

spectrum are discussed. An SO(18) example is discussed in some detail. An occurrence of spinors as a classification

of composite particles is discussed. A long appendix discusses useful techniques for practical calculations involving

spinors.

I. FAMILIES AND SPINORS

Fundamental forces are unified, but not funda-
mental fermions. The thrust of contemporary
physics has been to describe the strong, electro-
magrietic, and weak interactions in terms of a
grand unified gauge theory based on a simple Lie
group. Ambitious though these theories are, they
fail to shed any light on the mystery that fermions
appear to occur in identical families. Why does
Nature repeat herself? In all the grand unified
theories presently on the market, fermions in a
given family are assigned to some representation
(not necessarily irreducible) of the gauge group
and the repetitive structure seen in Nature is ac-
commodated simply by having this representation
as many times as there are families.

It is reasonable to suppose that in the ultimate
grand unified theories the fundamental fermions
are unified into one single irreducible represen-
tation R of the gauge group . When one breaks
Q into some subgroup G the irreducible represen-
tation R should decompose into several copies of
the representation R of G, thus reproducing the
repetitive structure seen in Nature. (We are im-
plicitly assuming that quarks and leptons are fun-
damental. Another approach to the family prob-
lem might involve the possibility that quarks and
leptons are composite. See Sec. IV.)

Remarkably enough, the group-theory condition
mentioned above goes a long way towards deciding
the relevant group and representation. It is easy
to see, for instance, that if g and G are both sim-
ple unitary groups, the tensor representations of
9 do not decompose into a direct sum of identical
representations of G. As an illustration, consider
the traceless tensor T~""' of SU(8). When SU(8) is
broken down to SU(5) in the standard way, the de-
composition of this tensor representation contains
5+10 three times, but together with such unwanted

representations as 24 and 5. Another serious
problem with the simple unitary groups is that
their representations are not in general free from
anomalies. One then has two choices. Assign
the fermions to several different representations
whose total anomalies cancel [as in the SU(5) the-
ory of Georgi and Glashow'j and thus frustrate the
desire to unify the fermions in a single irreducible
representation. Alternatively, one has to use a
real representation of the simple unitary groups.
There are reasons' for not favoring real repre-
sentations. The observed fermions form a com-
plex representation under SU(3) xSU(2) xU(1),
SU(5), and SO(10). If fermions are assigned to a
real representation, then invariant bare-mass
terms for the fermions are allowed in the Lagran-
gian. '

A survey of all Lie algebras reveals that only
the spinor representations of orthogonal groups
come close to having the desired decomposition
property. The spinor representations of SO(2n)
are 2" '-dimensional. Most amazingly, the 2™1-
dimensional spinor of SO(2n+2m) decomposes into
2 spinors of SO(2n). We believe that this striking
group-theoretic fact justifies exploration of a con-
nection between repetitive family structure and
spinor representations.

For the sake of completeness, a review of the
group theory of spinor representations is given in
the Appendix. Essentially, the reason that a
spinor decomposes into a sum of spinors rests on
two facts: (1) spinor representations exist be-
cause Clifford algebras exist, and (2) Clifford
algebras may be constructed iteratively. Let us
briefly explain. The Clifford algebra associated
with SO(2n) consists of 2n Hermitian matrices y,
which satisfy

If such a set of matrices exists, then clearly the
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matrices cr„= ,'i[—y,, y,] generate, rotations in the
i-j plane. To show that Clifford algebras exist,
one constructs them by iteration. Given y,'."',
i =1, . . . , 2n associated with SO(2n), one defines

(n+a) —y(n) (3) 7

(n+a)
&2n+a =1 &»

(n+a)
~2n.2 =1 &2.

1 ) ~ ~ ~ ) 2' (2)

(3)

(4)

(The iteration starts with yI ——0.) Note that the
matrix

(n+a) (n)
&Fr =rF)VE ~s

Physically, we wish to start out with an SO(10 +4&)
gauge theory with the fermions assigned to a com-
plex spinor representation (8, or S, it does not
matter which) and decompose the theory down to
the standard SO(10) theory. ' The difficulty, as
just stated, is that a representation complex under
SO(10+4%) turns out to be real under SO(10). The
SO(10) theory contains 2'"-' 16,'s and 2'~ ' 16 's.
If our convention is such that the observed elec-
tron family with V -A weak interactions belong to

anticommutes with y, . Thus, if P transforms un-

der SO(2n) as

g- e "&P&i$

then the "chiral" components

g, -=—,'(1+y„, )g

transform irreducibly. Thus, SO(2n) has two

spinor representations 8, which are clearly 2

dimensional by construction. From the iterative
construction it is obvious that spinors decompose
into spinors under an orthogonal subgroup. For
further details, see the Appendix.

Another significant feature is that the orthogonal
groups, except for SO(6), are all anomaly free.'
For SO(4%+2) the spinor representations S, are
complex and conjugates of each other.

The fact that the group decomposition property
of spinors is highly suggestive of the observed re-
petitive family structure was noted independently

by the present authors' and by Gell-Mann, Bamond,
and Slansky. A number of other authors have
also studied the use of spinor representations to
unify the fermions. ' There is, unfortunately, a
serious obstacle to constructing a reasonable
theory. The group theory almost works out as
desired, but not quite. The hitch is that 8, of
SO(2n+2m) decomposes into an equal number of

S, and S when restricted to SO(2n). This incon-
trovertible group-theoretic fact may be seen read-
ily from the construction in Eqs. (2)—(6):

a 16„ then the fermions in the 16 's would have
V+A. interactions.

II. VfHERE ARE THE V+A FERMIONS'?

Experimentalists assert that they have not ob-
served fermions with V+A weak interactions.
The v lepton evidently' decays by V-A interac-
tions. Establishing the same fact for the 5 quark
will be an important experimental task.

We are thus left with several possibilities, which
are not necessarily mutually exclusive. (1) The
idea of obtaining repetitive family structure from
spinor representations may be altogether wrong.
Perhaps quarks and leptons are not elementary.
(2) Perhaps V+A fermions will be seen after all,
in the next round of experiments. (3) The idea of
using spinor representations is correct. How-

ever, the V+A fermions are to be concealed
somehow. In Bef. 5 the present authors suggested
giving the V-A fermions large masses by using
the Higgs mechanism. This can be done. How-

ever, the scheme appears somewhat artificial and
ad ho(;, as is often the case when explicit Higgs
fields are employed. A more ingenious scheme
was suggested by Ge11.-Mann et al. in Bef. 6.
They utilize the idea of heavy color" to conceal the
unwanted V+A. fermions. After breaking SO(10
+ 4n) down to SO(10)x SO(4n), they assume that
some subgroup (call it HC) of SO(4n) remains un-
broken and is to be identified as heavy color.
The point is that the two spinor representations
S, of SO(4n) in general. decompose quite differently
under the subgroup HC and, in particular, will
contain a different number of HC singlets. The
fundamental hypothesis of heavy color, that HC

nonsinglets are confined by HC-strong forces,
is then invoked to conceal the V+A. fermions.

In this paper, we explore the heavy-color
scheme" outlined by Gell-Mann et a/. While the
explicit Higgs scheme suffers from a certain
amount of arbitrariness, the heavy-color scheme
is not without its share of arbitrary choices stem-
ming from our ignorance of strong-interaction dy-
namics. Starting with a gauge symmetry SO(10
+4n) one can in general break the symmetry down

stepwise into SU(3)„~,&&U(1), in many different
ways. Without a detailed theory of symmetry
breaking we do not know which symmetry-breaking
chain is favored. It is also possible, and in view
of the fairly complicated symmetry breaking re-
quired (Sec. II) even likely, that the pure gauge
theory with spinor fermions will have to be sup-
plemented with other fields (e.g. , explicit Higgs
fields) .

Another problem of this program of fitting the
fermion families into a single spinorial represen-
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tation is the proliferation of fermions, which
threatens to modify the renormalization-group an-
alysis of Georgi, Quinn, and Weinberg. " As we
will see, this actually constrains fairly severely
the symmetry-breaking chain.

III. AN SO(18) THEORY

SO(14) is not large enough to contain more than
two V-A families. Thus, the smallest theory
we may consider is SO(18). Let us take the spinor
S, of SO(18). Upon breaking SO(18)—SO(10)
xSO(8) we have S,—(16, , 8,)+ (16,8 ).

We are now faced with a well-defined group-
theory problem. What is a subgroup HC of SO(8)
such that under HC, the decomposition of 8 does
not contain singlets while the decomposition of 8,
does contain singlets?

According to the Appendix, the spinors S, de-
compose quite differently under the unitary sub-
groups. In particular, referring to the Appendix
we see that upon breaking SO(8) —SU(4) we have

8.—[0]+[21+ [41 = [ol+ [2] + [ol,
8 —[I]+[3]=[I]+[I].

The notation [k] ([k]) denotes the representation of
SU(n) realized by an antisymmetric tensor with k

upper (lower) indices. If we identify SU(4) as HC

we would then have two unconfined V-A families.
Suppose we go further and consider the breaking
SO(8)- SU(4)- SU(2) xSU(2), then we have

8.—[01+[21+[0]-[0,0]+[0,2]+[1,11

+[2,o]+[o,o],
8 —[1]+ [1]—[0, 1]+ [1,0] + [0,1]

+ [I,o] .

(Obviously, under SU(n+ m) —SU(n) xSU(m), [k]-$,„.,[j,l] with [j,l]-=[j]@[I].} For SU(2), the
representation [2] is equivalent to [0]. Thus, if
we identify SU(2) x SU(2) as HC, then this theory
contains four V-A fermion families. All V+A
fermions are confined. Thus, the theory predicts
one additional family beyond the 7 family.

Incidentally, Gell-Mann et al. identified HC as
Sp(4). The group Sp(4) contains SU(2) xSU(2) and
is itself contained in SU(4). Under the breaking
chain SU(4) —Sp(4) —SU(2) xSU(2) we have the de-
composition

4- 4- [1,O]+ [O, 1],
6- 5 + 1 —[1,1]+ [0,0] + [0,0] .

Thus, if one stops the symmetry breaking at
Sp(4), as Gell-Mann et at do, one would h. ave
three V-A families.

This discussion underscores the fact that, owing

to our ignorance of symmetry breaking, the phy-
sical predictions of the scheme depend completely
on the unbroken subgroup chosen. In the present
state of the art, this choice is largely arbitrary.
We could, for instance, break down further into
the diagonal SU(2) subgroup of SU(2)xSU(2). In
this case we end up with five V —A families. It
is amusing to note the local isomorphisms SU(4)
= SO(6), Sp(4)= SO(5), SU(2)xSU(2)= SO(4), and
SU(2) = SO(3). Thus, in the present discussion,
the number of V —A families is "predicted" to be
two, three, four, or five, respectively, accord-
ing to whether SO(8) is broken down to SO(6),
SO(5), SO(4), or SO(3). [These orthogonal sub-
groups are not embedded in SO(8) in the obvious
way, however. ]

The group SO(8) is beloved by group theorists
because of its remarkable symmetry properties
(as may be seen from its Dynkin diagram). In the
present context it suffices to note that the two
spinor representations 8, of SO(8) have the same
dimension as the fundamental vector representa-
tion 8„. There is an outer automorphism of the
group which rotates these three eight-dimensional
representations 8„8, and 8„ into each other.
With the standard embedding of SO(6) =—SU(4) into
SO(8) such that 8„—6+1+1 the spinors decompose
into spinors [see Eq. (AV)] 8,—4+4. The "pecu-
liar" embedding of SO(6) into SO(8) giving the de-
composition we want is obtained by applying the
outer automorphism so that the spinor 8, —6+ 1
+1 while 8 —4+4. We could also easily under-
stand the embedding of SO(5) =—Sp(4) into SO(8) such
that 8, —5 + 1 + 1 + 1 and 8 —4 + 4. It corresponds
to the standard embedding of SO(5) into SO(6) such
that 6„—5+1. According to the Appendix the
spinors of SO(2n) and SO(2n —1) have the same
dimensions. Thus, the embeddings given above
correspond to the standard embedding followed by
a "twist. " Note also that SO(8) belongs to the se-
quence SO(4n) of orthogonal groups in which the
two spinors S, are real and so could decompose
quite differently. From the group-theoretic point
of view the SO(18) theory is thus particularly at-
tractive.

Our discussion of the theory is incomplete with-
out an analysis of the behavior of the gauge coup-
ling constants under the renormalization group.
As noted before, this imposes certain restrictions
on the allowed chain of symmetry breaking. The
group SO(18) may be broken down in many differ-
ent ways. For example, we may have the chain
SO(18)—SU(9) —SU(5) x SU(2) —SU(3) x SU(2) x U(l)
xSU(2). Without a detailed dynamical theory of
symmetry breaking we can only examine each of
the many possible chains in turn and find the one
which works best.
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We suggest the symmetry breaking occurs
through SO(18),

SiI SU (3)x SU (2) x U(l) xSO(8),

MSU(3) xSU(2) xU(1) xSU(2)xSU(2) .

(9)

We know of no dynamical reason why the symmetry
should break down in this (somewhat peculiar)
fashion.

The running gauge coupling constant behaves as"
1 1 1

n(p) n(M) 6v p,
+—ln —[-11C,(G) + 2T(R)] . (10)

Here o. -=g'/4v. The index T and the Casimir in-
variant C, are defined for a given representation
R by

try'y = T(R)6"

n -'(p) =a -'(M) +—ln —[—33+4F]1 M
3 3 6g

' +—ln —[-33 +4F]SK
G 6&

We define

+—ln —[—33+ 4f] .
1 M

67t p.
(16)

4F sg 4f M
A =—ln —+—ln —.

6p M 6p p.
' (17)

Here F and f denote the number of high- and low-
energy fermion families, respectively. In the
case under discussion, F=16, f=4. Introduce
the standard notation: a, —:a, , «, =—n/sin'8, and
o., = a/cos'e Th.en

and

(12)

1
n -'=n -'+—in~[-331+a,

6m ]Lt.

(18)

C (R)d(R) = T(R)d(adjoint), (is)
where d(R) =dimension of R. We normalize y' so
that for SU(N), T (fundamental representation)

1
2 '

An easy computation shows that for SU(N), 7
(fundamental) =

2 and C, (SU(N)) =N, while for
SO(2n) T (fundamental) =1, T (spinor) =2 ', and
C2(SO(N)) =N —2.

Incidentally, we notice that in the sequence of
theories based on SO(4N+ 2) and with all fermions
assigned to a single spinor representation, SO(18)
is the largest group for which one has an asymp-
totically free theory. The quantity in square
brackets in Eq. (10) is equal to [-176+64] for
SO(18) and to [—220+256] for SO(22). Whether or
not this fact is significant we do not know.

There are two mass scales in the problem: a
grand unifying mass scale 9R at which SO(18)
breaks down to SU(3) xSU(2) x U(1) x SO(8) and an
intermediate mass scale M at which SO(8) breaks
into SU(2)xSU(2) [see Eq. (9)]. Between M and sK
there are sixteen fermion families while between
Sit and some "low-energy" mass scale p. (100 GeV
say) there are four fermion families. Working to
lowest order, ignoring threshold effect, etc. , we
write down a set of approximate renormalization-
group equations:

a.,(S!t)=a, (nm) = -', a, (SK) =n, (sg) = n G, (i4)

The left-hand sides of Eqs. (11) and (12) are eval-
uated over the representation R. In Eq. (10) fer-
mions are to be treated as two-component Weyl
fields and C, (G) denotes C, (adjoint representa-
tions). An obvious identity follows,

sinagn-' =n '+—ln —[-22]+A. ,
sg

6m p,
(19)

35 cos28Q-1= n G-1+A (20)

Finally, the evolution of n, between M and 5R is
given by

n '(M)=a '+—ln —[-66+4F].1

67t M

n/a, = —,', (6 sin'8 —1),

sin'ea ' —a, ' =—ln —[11]«] BR

6p p,

(22)

(23)

are derivable from Eqs. (18)—(20). The grand
unified predictions for sin'8 and for 8K are pre-
served.

What is changed from the standard SU(5) analysis
is the value of aa. Combining Eq. (21) with Eqs.
(18)-(20), we may determine M by

We assume that below the mass scale M the coup-
ling for SU(2) xSU(2) is in a strong-coupling re-
gime and that we cannot trace its behavior by using
lowest-order renormalization-group analysis.
[Of course, if one were to naively treat the SU(2)
xSU(2) coupling to lowest order it could not be
asymptotically free. ]

It is also noteworthy that the SO(8) coupling is
asymptotically free, albeit by a tiny margin. This
is of course the reason why we chose this particu-
lar symmetry-breaking chain.

We notice that Eqs. (18)-(20) have exactly the
same form as in the standard SU(5) analysis. This
is of course due to the fact that low-lying fermions
contribute equally to the renormalization of the
SU(3), SU(2), and U(1) couplings. Thus, the two
standard results
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—ln —(8[66—4f]) =141 M 8 sin28 1 t

6v p ' n nj
8

o. 3o.,(M) j
' (24)

Since n, (M) is supposed to be of order 1, its
precise value is unimportant in determining M.
In contrast, the precise value of n~ does depend
on n, (M).

For the sake of definiteness we put in some
numbers. We take sin'8= -', . Then from Eqs.
(22) and (23) we have n, = —",n and Slt/p= 1.8&& 10".
The intermediate energy scale M, above which we
have 256 effectively light fermions, is determined
from Eq. (24) to be M/ p, = 1.2 x 10'. Taking p. to
be -100 GeV, we find that

M=10" GeV.

Finally, we determine from Eq. (21)

na '=o., '(M) +1.5 .

(26)

(26)

Remembering that in the large-N limit the effec-
tive coupling for a gauge theory based on SU(N)
or SO(N) is a.ctually g'N, we see that if we take
8o.,(M) to be order 1, 18na-2 is roughly of order
1. We should remind the reader that our renor-
malization-group analysis is very approximate
and that the various output numbers are quite sen-
sitive to the input value of sin'8.

Incidentally, if we were to identify as HC some
subgroup of SO(8) other than SU(2)x SU(2), then the
only quantity affected is M. The coefficient of
(I/6m) ln(M/p, ) in Eq. (24) will be replaced by
—,'(66 —4f), where f=the number of V —A. families
at low energies.

The value 10"GeV which we obtained in Eq.
(25) for the scale at which SO(8) becomes strong is
a very undesirable result. The reason is that, as
one can see from the Appendix, the mass term
for the V+A fermions, transforming as 16 ~ 16,
do not contain a piece which transforms as a sin-
glet under the electroweak SU(2) & U(1) subgroup
of SO(10). Thus, SU(2) xU(1) is necessarily bro-
ken at 10" GeV which is not acceptable. To put
it somewhat differently, there is an upper bound of
the order of 10 GeV on the masses of V+A fer-
mions in theories of this kind. "

One might suggest at this point that the heavy-
color framework be jettisoned and that an explicit
Higgs mechanism be used to give the V+A fer-
mions masses of the order of 10' GeV. Unfor-
tunately this is inconsistent with Eq. (24).

One possible view, though not a very satisfac-
tory one, is that SO(18) may be a good classifica-
tion symmetry but only a subgroup of SO(18) is
gauged. For instance, perhaps only SO(10) &&SO(8)

IV. SPINORS AS COMPOSITES

The notation of the Appendix, in which spinors
under SO(2n) are represented as n-component
strings of + and —signs, suggests that in some
sense these spinors are composites of n more
elementary objects. In this section we shall make
this notion a little more precise and note a con-
crete physical realization of spinor multiplets
arising as composites.

A construction of spinors different, but almost
trivially equivalent to, that supplied in the Ap-
pendix goes as follows. " Consider the algebra of
N-fermion creation and destruction operators:

(a;,a/=6„,
(a, , a,]=(a';, aP = 0.

i,j=1, . . . )N
(27a)

These have an obvious representation in the oc-
cupation-number space spanned by N-component
strings of + and —signs:

! + —++ — ~ ~ ) (28)

Here in the ith place + represents the occupied,
and —the unoccupied, state for fermion i. These
strings span a 2"-dimensional space.

Now the Hermitian bilinear operators

a;a~. + a,a~, (29a)

(28b)

close as an [N'+N(N —1)=2N' —N]-dimensional
Lie algebra. It is not difficult to convince one-
self that this Lie algebra is isomorphic to that of
SO(2N) .

is gauged and one does not seek to unify heavy
color with SO(10). In that case, one can arbitrar-
ily set the scale at which SO(8) becomes strongly
coupled to be 10' GeV. There may even be some
dynamical basis for thinking that SO(18) may be
good only as a classification symmetry. One such
scheme is sketched in the next section. Another
possible scheme involves preons. For instance,
suppose preons (as two-component Weyl fields)
are assigned to R R* repeated n times, where
R denotes a complex representation of some
heavy-color gauge group which binds the preons
into quarks and leptons. The theory then posses-
ses an SU(n) &&SU(n) &&U(1) global symmetry. One
might quite naturally gauge some subgroup of
SU(n) &&SU(n) xU(1) such as SO(10) xSO(8). There
would be no reason why one necessarily has to
unify the SO(10) vertical group with the SO(8) hor-
izontal group. All these possibilities, however,
negate our motivating philosophy of placing all the
fundamental fermions in one single irreducible
representation.
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The fermion bilinears, and hence the algebra
of SO(2N), are now represented acting on the 2"-
dimensional occupation-number space. Since the
bilinears either leave the total number of occupied
states unchanged or change it by an even number,
this representation decomposes into two pieces-
one with an even number of states occupied, the
other with an odd number occupied. Each of these
2 '-dimensional representations, labeled S, and
S in the Appendix, is an irreducible spin repre-
sentation.

This representation of the spinors shows that in
a certain sense they may be regarded as compo-
sites of fermions.

An interesting physical realization of this con-
struction exists. Consider a magnetic monopole in
a vector SO(3) gauge theory broken down by an
isovector Higgs field to U(1). Suppose that there
are N isodoublet fermions in the theory as well.

For N = 1 this situation was analyzed by Jackiw
and Rebbi." They found that there is a bound
state of the fermion in the presence of the mono-
pole with exactly zero energy. This means that
there are two degenerate states, i.e., the mono-
pole with or without the zero-energy ferm ion added .
Because of the charge-conjugation symmetry of the
theory, and the fact that the states differ in fer-
mion number by one, these states have fermion
number y2.

With N fermions we will have zero-energy bound
states for each, which we can fill independently.
We then have 2~ states, which can be reached
from one another by the creation and destruction
operators a~, a,. which add or remove a zero-
energy fermion of type i. In fact, we have repro-
duced the mathematical setup of the spinor rep-
resentation just reviewed above. The monopole
states form degenerate multiplets organized into
spinor representations of SO(2N).

These considerations still have us far from a
realistic theory of fermions as composites, for
several reasons. First of all the composites are
spin-zero bosons. (This could conceivably be
solved by binding an additional boson. ) Second,
there will be a long-ranged force between the com-
posites generated by the unbroken U(1) in the un-

derlying SO(3) gauge theory. The reader will note
that this scheme is also plagued with the problem
of having equal numbers of V-A and V+A. fer-
mions. We must overcome many difficulties be-
fore we have a physical theory along this line, but
the mathematical framework certainly seems ripe
for exploitation. Notice that in any scheme of this
kind it is very easy to include gauge interactions
for SU(N), which simply transform one type of
fermion into another. The full SO(2N) seems very
awkard (in terms of the original fermions) to

gauge however. Perhaps this suggests that the
spinor representations orthogonal groups are
good for classification of fermions but that the
interactions only gauge the unitary subgroup.
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APPENDIX

In this appendix we present various techniques
for dealing with the spinorial representation of
orthogonal groups in the hope that others working
in this field may find this "handbook" useful.
Certainly, there is nothing here that has not been
known to the mathematicians for a long time.
However, some of the explicit notations introduced
below may prove to be efficient in physical calcu-
lations.

A list of the topics to be discussed below is as
follows:

(1). Existence of spinorial representations.
(2). Construction of spinors.
(3). Conjugation properties.
(4) . An explicit notation.
(5). Restriction to orthogonal subgroups.
(6) . Internal parity.
(7). SO(N) for N odd.
(8). Embedding of SU(n) into SO(2n).
(9). Decomposition of spinors.

(10). Mass pattern of SU (2n) gauge bosons .
(11). Explicit identification of fermion states.

Existence of spinorial representations

We assume the reader is familiar with the def-
inition of the orthogonal groups SO(N) and O(N)
and with the construction of tensor representa-
tions. To discuss the spinorial r epr es entations
one begins by proving the following fundamental
theorem: There exist 2n Hermitian matrices y, ,
i=1, . . . , 2n, which are 2" by 2" and which satisfy

(Al)

The y; 's are said to satisfy a Clifford algebra.
The proof is by explicit iterative construction.
For n = 1, the matrices desired can be chosen to
be two of the Pauli matrices

oj
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To iterate from n to n+1, one constructs the y
matrices for n + 1, denoted by y, in terms(N+1 )

of y by

(A2)

(~&& (0 1)

(I oi

&
"&) fo —&)

o j

(As)

(A4)

(o)np )
( o o(,.",)j

This proves the theorem.
%e note here, for future use, that if we define

o, -=&ni[y, , y,.), the Hermitian matrices o'&,. for
SO(2n+ 2) are then iteratively related to the ma-
trices for SO(2n) as follows:

representation is not irreducible. To see this we
construct the matrix y»«by

ypgpz =( ')"(y 'Y ' ' 'y ) (A6)

which clearly anticommutes with y, since 2n is
even. Thus, if y transforms under SO(2n) as P

U(R)(( the "chiral" components (I+yz,vz)g and
(1 —yz, vz)g transform separately. In other words
there are two irreducible spinor representations,
which we denote by S' and S, with dimension=2n '.
They may be referred to as the "right-handed"
and the "left-handed" spinorial representations,
respectively.

The key fact for our purposes, as is explained in
the text, is that the dimensions of spinorial repre-
sentations increase exponentially with the rank of
the group. In contrast, the dimensions of tensor-
ial representations only increase like a power.

Because of the block construction given in Eqs.
(A2)-(A4), it is evident that spinorial representa-
tions of SO(2n) decompose into direct sum spin-
orial representations of SO(2n')(: SO(2n). The
construction of yz, vz given in (A6) means that in
block notation

0 y(n)

() ()

(n)
(n„) FIVE

yF IVE
yF IVE

(Av}

u f 0

o

As a consequence, the right-handed spinor S, of
SO(2n+2m) actually contains 2 ' right-handed
spinors and 2" ' left-handed spinors of SO(2n) .

(n+ &)
f' -1 0'))

»+&z 2~2
0 1

Conjugation properties

The notion of "conjugation" can be introduced.
I et g transform as a spinor. Then the combination
gC&() will be invariant under SO(2n) if the matrix
C is such that

C 'vT&&C = —o,&
(T =transpose). (A8)

Construction of spinors

The eonstruetion of spinors follows essentially
the same procedure, familiar to physicists, of
constructing spinors for the I orentz group. We
introduce the Hermitian matrices o&&-—2 i[y, , y&]
and the unitary matrix U(B) = e&"', where &do

=—&d&~a&&, (d&& antisymmetric in ij and real. (Re-
peated indices are always summed. ) Then one can
easily verify that

U' '(B)y U(R) =R, (&d)y, ,

where R» is the 2n-dimensional orthogonal matrix
associated with rotations through angle

cubi&
in the

i-j plane in 2n-dimensional space.
The map R -U(R) then defines a 2n-dimensional

unitary representation of SO(2n). However, this

The conjugation matrix C could be eonstrueted
by iteration. Start with C'" =i7, for n =1 and de-
fine

C (n+ j.)
C&"'

I

!

( )tn&C(n& p )
(A9)

One verifies easily that

C (n&-&y TC (n& ( )ny (Alo)i'
Notice the necessary factors of (-)" in Eqs. (A9)
and (A10). They account for some of the peculiar
properties of SO(2n). In particular, Eq. (A9) and

Eq. (A10) imply that for SO(2n)

C T ( )n(n+&)/nC (A11)
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(A12)

It follows from Eqs. (Av), (A8), and (A12) that

C '[o', (I+y, )]*C=C 'o,*(1+y,)C

with n ir matrices on the right-hand side. Thus C
acting on ~e,e, ~ ~ ~ c„) has the effect of flipping the
sign of all the c's. The conjugation properties of
S+ and 8 reached earlier thus follow immediately
since obviously g&", c& changes its sign under C
for n odd, and does not change its sign for n even.

= —(r,~[1+(—)"y,] (Als) Restriction to orthogonal subgroups

This means that for SO(2n) with n even, S' and S
are real (i.e. , self-conjugate). In contrast, for
SO(2n) with n odd, S is the conjugate of S' (and
vice versa).

yn =yn x7', i=12 . . . 2nj j 3f

y (gj+1)
2n+1 ly

(n+1)y2„' =1xr, .

(A2 )

(As )

(A4')

Here 1 denotes the unit matrix. This iterative
construction yields for SO(2n) the following forms
for the y matrices

y» = 1 x 1 x 1 x ~ x 1 x v.,x ~, x 7', x ~ ~ ~ x 7, (A14)

with 1 appearing k —1 times and r, appearing n —k
times,

y»1 1x1x1x xlxrlxr xr x x
(A15)

with 1 appearing k —1 times and r, appearing n —k
times. The matrices o», » are thus diagonal:

a» 1»= —1x1x ~ ~ ~ x1X~3X1x 1 ~ ~ x1t (A15)

with 1 appearing k —1 times preceding r, and n —k
times following ~3.

We could denote the states in a spinorial repre-
sentation of SO(2n) by

~ ' t ), (A17)

where E~ can. take the values +1. Note that in this
basis yrzvz =(-i)"y, ~ ~ ~ y» has the form

FIVE 3X 3X' ' 'X (A18)

with r3 appearing n times. Thus the right-handed
spinor consists of all those states ~c,c, . ~ &„)
such that g&„a &

=+ 1, while for the left-handed
spinor, the product Q,"., t', = —1. By the iterative
construction given in Eq. (A9) we see that the con-
jugation matrix C has the form

C -sr2 x ~r2 x &r2 x ~ ~ ~ (A19)

An explicit notation

In assigning physical particles to spinorial rep-
resentations we find it useful to have a more ex-
plicit notation. Some of the properties discussed
above also become obvious in this notation. Let us
rewrite Eqs. (A2)-(A4) in a cross-product nota, —

tion'.

When we restrict a spinor of SO(2n+2m) to the
subgroup SO(2n) we merely rewrite ~e,a, ~ ~ c„„)
=g&",e& g&"'„"„c,this confirms the previous obser-
vation about a definitely handed spinor of SO(2n
+2m) containing equal number of right-handed and
left-handed spinors of SO(2n). Explicitly, under
SO(2n + 2m) - SO(2n) x SO(2m), spinors decompose
as follows:

2»+ (2" 2
- )+(2 -~ 2 -~)

2»+~ (2» ~ 2~-&) (2»-& 2l»-&)

Internal parity

(A20a)

(A20b)

Qne may wish to extend SO(2n) to O(2n) = SO(2n)
x P where P denotes reflection in the 2n-dimen-
sional space. Since y, yjy, = —y, if a0 i and y, if
a =i, the reflection operator may be chosen to be
y, . We see that under internal reflection S,~S,
since y, anticommutes with y»«. The irreducible
spinorial representation under O(2n) thus consists
of (S„S). Consulting Eqs. (A14), (A15), and
and (A17), we note the internal reflection acting
on ~e&) flips one of the t's

Embedding of SU(n) into SO(2n)

Low-energy physics, however, is done with
unitary groups, and not with orthogonal groups.

SO(2n- l)

Most of the discussion in this appendix will be
focused on SO(2n). For completeness, we will
now briefly indicate how most of the remarks on
SO(2n) could be taken over for SO(2n —1). The
rotations in SO(2n) are realized as transformations
over the 2n matrices y, i = 1, . . . , 2n in the manner
indicated by Eq. (A5). We consider SO(2n —1) as
a subgroup of SO(2n) and simply throw out the ma-
trix y,„. The rotations in SO(2n —1) are then rea-
lized over the (2n 1) matrices y, i =1, . . . , 2n —1.

One may think that y»vE could not be defined for
SO(2n —1). However, one could simply employ the
y, defined for SQ(2n) (Eq. A6) which obviously
commutes with the generators o',

&
of SO(2n —1).

Thus, the irreducible spinorial representations
of SO(2n —1) in fact have the same dimension as
the irreducible spinorial representations of SO(2n),
namely 2" '.
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Color gluons and the electroweak bosons are sup-
posed to "know" only about the unitary groups
SU(3) x SU(2) x U(1). Thus, for physical purposes,
we must discuss how unitary groups are embed-
ded into SO(2n).

There is a natural embedding of SU(n) into
SO(2n). The group U(n) consists of transforma-
tions on n-dimensional complex vectors a, b

leaving invariant the sum g&,b~a, Writing a,.
=x,. +fy, , b, =x', +iy', we. find that U(n) leaves in-
variant g".. , (x',.x,. + y',.y,.) and g". ,(x,'.y,. —y,.'x,.) and is
thus the "natural" subgroup of the SO(2n) of rota-
tions on the real 2n-dimensional vector

x) (A21)

Let R=e"~ SO(2n), then M is antisymmetric and

may be written as [in the basis of (A21))

(A B)
cf

(A22)

/0 1'I
el=

/

L,
—1 Of

(A24)

where A is antisymmetric and B is symmetric.
Taking out the trace of B we are left with SU(n)
Thus, we have the decomposition SO(2n)- SU(n)
&&U(1). Under this decomposition it is clear that
the 2n vector representation of SO(2n) decomposes
into n+H of SU(n) corresponding to x+iy.

lt thus follows that the n(2n —1) generators of
SO(2n), which transform as (2n&&2n)~ under SO(2n)
and as [(n+n) x (n+n)]~ under SU(n) may be clas-
sified as follows:

n' —1 the adjoint of SU(n);

1 singlet under SU(n);

n(n —1)/2 of SU(n);

n(n —1)/2 of SU(n) .

(A25a)

As a check, the total number of generators is
equal to 2n' —n. The singlet 1 generates the U(1)
in SO(2n) —SU(n) &&U(1). Thus, for example, the
45 generating SO(10) decomposes as

45 24+1+10+10.

Decomposition of spinors

This classification of the generators allows us
to decompose the spinorial representation S' of

where A. , C are antisymmetric n~n matrices while
B is an nxn matrix. It also belongs to U(n) if M
satisfies

JM +M J=0 (A23)

where

(kf
we can determine that the sequences in Eq. (A25)
terminate with [n] or [n —1].

Once again, we see that SO(2n) behaves quite dif-
ferently according to whether n is even or odd.
For n odd, the sequence [0]+[2J+ ~ ~ + [n —1] is
conjugate to [1]+[3]+ ~ ~ + [n], since [n —k] is
equivalent to [k] the conjugate of [k . On the other
hand, for n even the sequence [0]+[2]+ + [n]
is conjugate to itself (similarly for the sequence
[11+[31+ + [~ —1J)

Thus, we have determined the following decom-
position of spinors. For n odd,

&'- [o1+[21+" +[ —1]
S- —[1]+[3]+ "+[n].

(A26a)

(A26b)

For n even,

S —[01 + [2] + + [n],
S —[1]+[3]+~ ~ + [n —1] .

(A2Va)

(A27b)

To identify which sequence corresponds to 8' or
S we could have invoked the fact that in the ~e)

notation ~+++ ~ ~ +) and ~--- ~ ~ -) are SU(n)
singlets. (See later. )

Since SO(N) is anomaly free (except for N= 6),
the SU(n) anomalies of the representations ap-
pearing in the decomposition of SO(2N) spinors
necessarily sum up to zero. [For SO(6)- SU(3)
we have 4' decompose into 1+3 and 1+3, re-

SO(2n). Let S' decompose into a direct sum of
representations of SU(n). The generators n2 —1
and 1 transform each of these SU(n) representa-
tions into itself, while the generators n(n —1)/2
and n(n —1)/2 transform each of these representa-
tions into another. Now the generators n(n —1)/2
and (n(n —1)/2) carry two upper (lower) SU(n) in-
dices, antisymmetrized. At this point let us in-
troduce the notation [k] ([k]) to represent the rep-
resentation of SU(n) consisting of completely anti-
symmetric tensors with k upper (lower) indices.
Thus, the generators under discussion transform
as [2] and [n —2]= [2] and act by adding or re-
moving two upper or lower SU(n) indices. There-
fore we conclude that the spinorial representations
of SO(2n) decomposes into

[0]+[2]+[4]+ or [1]+[3]+[5]+ ~ . (A25b)

Using the identity
n

0 Vf ~1

and the fact that the dimension of k in SU(n) is
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spectively, which are manifestly not anomaly
free. ]

As an illustration of the foregoing discussion,
we have for the possibly physically relevant case
of SO(10)—SU(5), the anomaly-free decomposition

15 —[0]+[2]+[4]=1+10+5 .

Mass pattern of SO(2n) gauge bosons

It is occasionally useful to have a more explicit
notation. Referring to Eqs. (A22) and (A25), we
can write the generator of SO(2n) as

.. (A+C B+S)
M=(

IB —S A —Ci
(A29)

(-v 0&
(A29)

Here Q is an antisymmetric matrix. Equation
(A29) is written in the same basis as Eq. (A28).
g denotes a diagonal traceless n~n matrix. In the
physically relevant (possibly) case of SU(5) v
would be

where A, B,C are n&n antisymmetric matrices
while S is an n~n symmetric matrix.

The SU(n) subgroup is generated by A and the
traceless part of S. The trace of S transforms
as 1 under SU(n), while C+iB transforms as
n(n —1)/2 and n(n'~ 1)/2.

As an application of this notation let us consider
the mass pattern of the gauge bosons upon breaking
SO(2n) by a Higgs boson transforming as the anti-
symmetric two- indexed tensor, i.e. , as the adj oint
representation. Physically, we are motivated to
consider this choice of Higgs mechanism since the
breaking of SU(5) into SU(3)x SU(2)XU(1) is in-
duced by the 24-adjoint representation of SU(5).
When we extend the SU(5) theory to an SO(10)
theory, it is natural to suppose that the symmetry
breaking is induced by the 45-adjoint representa-
tion which contains 24, as was shown earlier.
Thus, we suppose the Higgs vacuum expectation
value to be

n' —1: W&~ traceless,

n(n- I)/2: W, -.;„
B(tl 1)/2 '

W[

(Ass)

The square brackets mean antisymmetrization.
Thus, for example, for SO(10)—SU(5), the SU(5)
singlet is the combination

~16 + ~27 + ~38 + ~49 + ~510
. (A34)

Explicit identification of fermion states

If we assign fermions to the spinor representa-
tions, we would often find it useful to know to
which fermion a given component of the spinor
representation corresponds. In particular, we
now embed SU(3) &&SU(2) &U(1) into SU(5) and in
turn into SO(10). In this connection we find it
somewhat more convenient to use the basis

x1

—Tr[M, Q]' = —Tr((B, vP +(C, v)'

+ [S,v]' —[A, v]')

= Q [(B,„'+C,„')(v, + v„)'

+ Q..„'+S,„')(v„-v„)']. (AS1)

Our first remark is that the trace of S, namely
the gauge boson transforming as a singlet [see
Eq. (A25)], remains massless. This may have
important phys ical cons equences.

On the other hand, if the vacuum expectation
value transforms as a singlet 1, or in other words,
if v in Eq. (A29) is proportional to the unit ma-
trix, the mass term would be such that only the
bosons transforming as n(n —1)/2 and n(n —1)/2
become massive.

Occasionally, we need to explicitly identify the
SO(2n) gauge bosons according to their SU(n)
transformation properties. Denote the SO(2n)
gauge bosons by W'" (= -W"). Introduce the no-
tation

6 -=a+i(o. +n) (As2)
corresponding to the n SU(n) indices. A lower in-
dex o. is equivalent to an upper index e =—o.
—i(n +n). Thus, we have

(Aso) (A35)

with W some number.
The gauge-boson mass terms in the Lagrangian

are proportional to 1n
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rather than the one in Eq. (A21) which we have
used so far. In this basis 1=1+i2, 2=3+i4,
etc. , and the singl. et boson is

~12 + ~34 + ~56 + ~78 + ~910 (A36)

We wish to embed SU(2)w~ into the SO(4) subgroup
of SO(10) generated bye'„. , 1 ~i, j&4. As is well
known there are two inequivalent ways to embed
SU(2) in SO(4): magnetic minus electric:

such as to conform to our convention below. j
Having learned how to embed SU(2) into SO(4)

and SU(3) into SO(6), we are now ready to embed
SU(5) into SO(10). The spinor representation S' of
SO(10) contains 16 states: j e, e,e, e,e,), e,. =x 1,
and L', e;=+1. We let SU(2} "act on" e, and e„
and SU(3) on e„e„and e,. From what we have
learned in Eqs. (A40)-(A43) we can now just read
off the physical particle states (all left-handed),

7p~&~ g
0 ]~

—&~4 ) s ) g ) k = 1,2, 3 (A3V) SU(2) doublets

or magnetic:

(A38)

Here r denote the generators of SU(2) and the
double arrows indicate the SO(4) generators with
which they are to be identified. We will see that,
physically, the magnetic minus electric method
corresponds to the Glashow-Weinberg-Salam-
Ward theory, while the magnetic method leads to
the Cheng-Li-Bilensky-Petkov theory.

For the moment, let us study the instructive
SU(2)c SO(4) example with the help of the cross-
product notation introduced in Eqs. (A16)—(A18).
Then the spinorial representation S' of SO(4) con-
sists of the states ~++) and ~--), while S con-
sists of ~+-) and

~
-+). In the "B—E" embedding

we have

3~012 034 73X 1 +1 X V'3. (A38)

(The Pauli matrices 7', on the left- and right-gang
side should not be confused. ) Thus, under SO(4)
—SU(2), &' decomposes into two singlets while S
decomposes into a doublet:

2+- 1+1,
2 2 ~

(A40)

(A41)

This fact that 8 and S decomposes quite dif-
ferently may have important physical consequen-
ces. It also confirms nicely the previously proven
theorem [Eq. (A13)j that S' and S are conjugate
of each other only for SO(2n) with n odd. On the
other hand, with the "B"embedding we have, un-
der SO(4)- SU(2), both S' and S decomposing in-
to doublets. Henceforth, we concentrate on the
B —E embedding unless otherwise stated.

For SO(6), S' consists of ~+++), ~+-—), ~-+—),
and ~--+). Under SO(6)- SU(3), it decomposes
as

d= ~+ —++ -) and color permutations

+-++ —, +-+-+, +- -++
u=

~

—+++-), and color permutations,

e = ~+- ——-),
p ~+~

SU(2) singlets

u= ~+++ —-), and color permutations,

d= (- —+ —-), and color permutations,

——+++

(A44)

x= )+++++) .
[Incidentally, it is now clear that, if we had

used the magnetic embedding of SU(2), then we
would not have SU(2) singlets. The theory con-
tains the weak-interaction doublets

(u'I (d (~ ) (e'~

&u, &e j,
(A45)

-(g ig + ~ +g, )= v' x 1xlxlxl+1
Xy X1X1X1X~ ~ ~

+1X1X1X1XT'3 (A46)

which acting on
~ e, . e, ) just gives Q,', e;. We

will denote -',P c, by X. Thus we find that acting
on the SU(5) representations 1, 10, 5 the values of
5X are in the ratio 5:1:-3. It is easy to see that
in general, for the case SO(2n)- SU(n), the corre-
sponding ratio for 8' is

and is "vectorlike. "j
With the assignment in Eq. (A43) we can read

off the coupling of the SU(5) singlet gauge boson in
Eq. (A36). It couples to

4 -3+1. (A42) n:n —4:n —8: (A4V)

Obviously, the state +++ is the "odd man out" and
transforms as 1 under SU(3}. According to our
general analysis, we must have

and for S is

n —2:n —6:n —10: (A48)

(A4s)4 -3+1.
[The identification of 3 and 3 in (A42) (A43) is

Another way of deriving this is to go back to the
notation of Eq. (A28) and compute the commutation
relation between
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(0 1&

(-I 0/

PC~CI'„P = —)C~I', C

( )tl(n+1)/2yC C(C 1PTC)y (A54)

j C +iC)

(+iC -C )

Now

where C denotes an nxn antisymmetric matrix.
This is of course just the usual SU(2) algebra with
the ra, ising and lowering operators equal to 7,+i7y.

It turns out that in SO(10), baryon number minus
lepton number is actually a, gauge generator. By
inspecting Eq. (A43) we see that

B—L = —,(e, + e, + e,) .
That B Lis pr-oportional to (~, + e, + e,) is obvious
since SU(2) commutes with baryon and lepton
numbers. Similarly, since ~@=+1 under weak
interactions, we find that electric charge is given
by

where we have used Eqs. (A10) and (All). Thus,
the coupling in Eq. (A53) is allowed only if the
combination

n(n+ 1)/2+ BK+ K(K —1)/2 = (S+ K)(8+ K+ 1)/2 —K

n+ K=4k+2 (A56a)

(A55)

is even. This peculiar requirement could be fur-
ther analyzed as follows. For n odd, K is re-
quired to be odd and so (n+ z}(n+ z+ 1}/2=+",'," l
is required to be odd. This fixes (for n odd}

1+ 6 (E3+ E'4+ C5) q

while the weak hypercharge is given by

(A50) with k an integer. On the other hand, for n even
we find

F
2

= Q —T3= —7~(E~+ E2) + 6 (63+ E'4+ E5) . (A51)

Thus, the three generators B L, 1'/2,-and X are
not linearly independent,

4(yB—L=X+—i—
5],2

(A52)

This fact is relevant to the discussion of B-L
violation in the SU(5) and SO(10) unification
schemes.

We now discuss the formation of mass terms
for the fermions assigned to the spinorial repre-
sentations. We could form the following invari-
ants:

((CDC I'„p)(('. (A53)

The notation is highly schematic. I', denotes an
antisymmetric product of ((y matrices. P is a
scalar field transforming like an antisymmetric
tensor with (( indices under SO(2n) Cand .CD de-
note the conjugation matrix under SO(2n} and the
I orentz group respectively. CD is antisymmetric.

Using the facts that Cy«» = (-)"y„,»C [Eq.
(A12)] and that y, «E is symmetric, we learn that
for SO(2n) the coupling in Eq. (A53) is allowed only
for ~ odd if n is odd (and for a even if n is even),
since g is an eigenstate of y«vE. Next we consider
the constraint imposed by the peculiar symmetry
property of C [Eq. (A11)]. Since P is anticommu-
ting, we have

n+ K=4k (A56b)

with k an integer. To give some examples, con-
sider the cases mentioned in the text:

SO(10), n= 5, K=40+ 1= 1, 5,
SO(14), n= V, a=4k+ 3= 3, V,

SO(16}, n=8, ((=40=0, 4, 8.

f,a(g, CDC I'„(!'~)p, (A5V)

where &, b are family indices. Higgs fields satis-
fying the constraints in Eq. (A56) would thus con-
tribute to the mass matrix a term symmetric in
the family indices, while Higgs fields not satis-
fying these constraints induce a term antisymme-
tric in the family indices.

For instance, to give mass to fermions assigned
to the spinorial representation of SO(10), the
Higgs fields have to transform as [1] and [5],
i.e. , as 10 and 126. Here, as before, the notation
l represents the antisymmetric tensor with l in-
dices. Note that 5 can be taken to be either self-
dual or anti-self-dual and thus has dimension
—,
' [10!/(5! 5!)].

More generally, fermions may not be assigned
to a single spinorial representation. In the physi-
cally relevant (possibly) example of SO(10), fer
mions of a given family are assigned to a spinorial
representation. In that case the coupling in Eq.
(A53) has to be generalized to read



FAMILIES FROM SPINORS 565

H. Georgi and S. Glashow, Phys. Rev. Lett. 32, 438
(1974).

2See, for example, H. Georgi, Nucl. Phys. B156, 126
(1979).

Some consequences of this are explored in A. Zee,
Phys. Lett. 99B, 110 (1981).

4H. Georgi and S. Glashow, Phys. Rev. D 6, 429 (1972).
~F. Wilczek and A. Zee, Princeton Report, 1979 (un-

published); for a report of this work see talk by F. Wil-
czek, in Proceedings of the l979 International Sym-
posium on Lepton and Photon Interactions at High
Energies, Eermilab, edited by T. Kirk and H. Abar-
banel (Fermilab, Batavia, Illinois, 1980). See also
lectures by A. Zee, in Proceedings of the Kyoto Sum-
mer School 1981 (unpublished).

GM. Gell-Mann, P. Ramond, and R. Slansky, in Super-
gravity, edited by P. Van Nieuwenhuizen and D. Z.
Freedman (North-Holland, Amsterdam, 1979).

~A partial list includes H. Sato, Phys. Rev. Lett. 45,
1997 (1980); A. Davidson et al. , ibid. 45, 1335 (1980);
J. Maalampi and K. Enqvist, Phys. Lett. 97B, 217
(1980); R. Cahn and H. Harari, Nucl. Phys. B176, 135
(1980); Z. Ma, T. S. Tu, P. Y. Xue, and X. J. Zhou,
Academia Sinica Report No. B1HEP-TH-3, 1980 (un-
published); R. Mohapatra and B. Sakita, Phys. Rev.
D 21, 1062 (1980); M. Yasue, INS Report No. 394,
1980 (unpublished); R. Gatto and J.Casalbuoni, Phys.
Lett. 93B, 47 (1980); M. Ida, Y. Kayama, and T. Kita-
zoe, report (unpublished); J. E. Kim, Phys. Rev. Lett.

45, 1916 (1980); I. Umemura and K. Yamamoto, Kyoto
Report No. NEAP-28 (unpublished); S. Nandi, A. Stern,
and E. C. G. Sudarshan, Fermilab Report No. PUB-81/
53, 1981 (unpublished); K. Enqvist et al. , Helsinki
report, 1981 (unpublished).

H. Georgi, in Particles and Fields —l974, proceedings
of the 1974 Meeting of the APS Division of Particles
and Fields, edited by C. Carlson (AIP, New York,
1975); H. Fritzsch and P. Minkowski, Ann. Phys.
(N.Y.) 93, 193 (1975); M. Gell-Mann, P. Ramond, and
R. Slansky, Rev. Mod. Phys. 50, 721 (1978).

~W. Bacino et al. , Phys. Rev. Lett. 45, 329 (1980).
L. Susskind, Phys. Rev. D 20, 2619 (1979); S. Wein-
berg, ibid. 19, 1277 (1979).

~~H. Georgi kindly informs us that he and E. Witten (un-
published) have also considered theories based on
SO(18).
H. Georgi, H. Quinn, and S. Weinberg, Phys. Rev. Lett.
33, 451 (1974).

~3D. Gross and F. Wilczek, Phys. Rev. Lett. 30, 1343
(1973); H. D. Politzer, ibid. 30, 1346 (1973).

~4This point was emphasized by I. Bars and M. Gunaydin,
Phys. Rev. Lett. 45, 859 (1980).
A closely related construction is supplied by H. Lipkin,
in Lie Groups for Pedestrians (North-Holland, Am-
sterdam, 1964). See also R. Gatto and J.Casalbuoni,
Ref. 7.

~~R. Jackiw and C. Rebbi, Phys. Rev. D 13, 3398 (1976).


