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A method is described for dealing with gauge field theories that contain very heavy particles, by constructing a gauge- 
invariant effective field theory, in which the heavy particles do not appear. For theories in which a simple group is sponta- 
neously broken to the strong and electroweak gauge groups, the running strong and electroweak effective couplings become 
equal to the original gauge coupling at different renormalization scales, given as weighted geometric averages of the super- 
heavy particle masses. The method is also applied to quantum chromodynamics with heavy quarks. 

If  weak, electromagnetic, and strong couplings be- 
come comparable at any energy, it is likely to be at an 
energy enormously greater than those with which we 
are generally familiar [ 1 ]. Specifically, if a large simple 
gauge group G .1 is spontaneously broken at a scale 
M to the SU(3) and SU(2) × U(1) gauge groups of  the 
strong and electroweak interactions (plus possible other 
subgroups of  G which commute with SU(3) X SU(2) 
X U(1)), and if all fermions are essentially similar to 
observed quarks and leptons (plus possible SU(3) 
× SU(2) × U(1) neutrals), then the mass scale M of  the 
superheavy gauge bosons is given by ,2 

l n M = 4 n 2 I  1 8 1 + 0 ( 1 ) , . . 3 5  ' (1) 
m e2(m) 3g2(m) 

and the Z 0 - 7  mixing parameter is ,2 

1 sin20 = g + ~e2(m)/g m ) +  O(a)  ~ 0.2 , (2) 

where gs (m)  and e(m) are the strong and electromag- 
netic couplings measured at some "ordinary"  mass 
scale m, say m ~ 100 GeV. 

'~ Research is supported in part by the National Science 
Foundation under Grant No. PHY77-22864. 

,1 Specific examples of such simple groups are given in the 
models of ref. [2]. 

+2 See ref. [ 1 ]. Small effects of scalar particles are neglected 
in eqs. (1) and (2). 

Clearly, in order to calculate the superheavy gauge 
boson masses with any precision it is necessary to cal- 
culate the O(1) term in eq. (1). Also, experimental 
determinations of sin20 are approaching the point 
where we would like to know the O(a)  term in eq. 
(2). But to go beyond the lowest order results (1), (2), 
care is needed in the definition of  the running coup- 
lings gi(t.l), and in their determination from experimen- 
tal data at/a ~ m. 

Such calculations have recently been presented by 
Goldman and Ross and by Marciano [3]. In their 
method,  the running SU(3) X SU(2) X U(1) couplings 
gi(~) are defined as the values of  various off-shell 
Green's functions at renormalization points with mo- 
mentum scale/1, and the Appelquis t -Carrazone theor- 
em [4] is invoked to justify the neglect of  superheavy 
particles at ordinary energies. There is nothing in prin- 
ciple that is wrong with this approach, but it has some 
awkward features. In particular, in the method of  ref. 
[3] it is not possible to take advantage of  the calcula- 
tional simplicity of  the "minimum subtraction" defi- 
nition [5] of  renormalized coupling constants (or other 
mass-independent renormalization schemes [6]), be- 
cause with renormalizations carried out by minimum 
subtraction, the Appelquis t -Carrazone theorem would 
not hold [7]. It is also complicated to include the 
superheavy gauge bosons in ihe renormalization group 
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equations for gi(I.O, which have to be evaluated to two- 
loop order in order to determine the O(1) terms in eq. 
(1) and the O(a) terms in eq. (2). 

In this note, I would like to lay the groundwork for 
a different approach to this sort of  calculation. The 
method is based on the use of  an SU(3) X SU(2) 
× U(1)-invariant "effective field theory", in which all 
superheavy fields have been integrated out, and the 
only fields that appear explicitly are those with ordi- 
nary masses, much less than M. 

In general, if a field theory contains a set of  fields 
q~ of  small or zero mass, and another set q5 of  much 
larger mass, then the action T[0] of  the effective field 
theory may be obtained from the action I [4), qb] of  
the full field theory by a functional integral over q5, 

exp (i~[~]) = f [dqb] exp (ff [qS, (b]). (3) 

The expectation value of  any functional of  the ~b fields 
can be calculated as an integral over ~ with weight 
exp(h~, or as an integral over ~ and q5 with weight 
exp(i/). Of course, Twill contain an infinite number of  
nonrenormalizable interactions, and the effective field 
theory cannot conveniently be used in calculations of  
physical processes at energies comparable with the mas- 
ses of  the q5 fields. However, any nonrenormalizable 
coupling constant in Tthat has dimensionality [mass] d 
with d < 0 may be expected to be roughly of  order 
M d, where M is a typical mass of  the cb fields. Hence 
the effects of  the nonrenormalizable couplings are sup- 
pressed ,3 at energies E "~M by powers o f  ElM.  Since 
there are no superheavy particles in the effective field 
theory, the Appelquist-Carrazone theorem is not 
needed, and there is nothing to prevent the use of  the 
minimum subtraction definition of  renormalized cou- 
pling constants. Indeed, this definition has a feature 
that adds greatly to the simplicity of  our approach: the 
renormalizat~n-group equations for the renormalizable 
couplings in I decouple from the others ,4, so that we 
can ignore all the nonrenormalizable couplings in 
working out the variation of  the running renormaliz- 
able couplings with energy scale ~t, even for/a compar- 
able with M! 

These remarks lead us to a program for calculating 

,3 Some of these suppressed interactions may become observ- 
able if they violate otherwise exact conservation laws. For 
a discussion of baryon and lepton noneonservation from 
this point of view, see ref. [8]. 

the O(1) terms in In(Mira) and the O(a) terms in 
sin20, as follows: 

(a) Determine the renormalized SU(3) × SU(2) 
× U(1) couplings gi(l l)  in Tat renormalization scales 
/~ of  order M, by a one-loop functional integral over 
superheavy fields, as in (3). (Here and below, all re- 
normalized couplings are to be defined by minimum 
subtraction [5], or by one of  its simple modifications 
[101.) 

(b) Calculate the renormalized SU(3) × SU(2) 
× U(1) couplings gi(IJ) at ordinary mass scales/a ~ m, 
by integrating the two-loop renormalization group 
equations of  the SU(3) N SU(2) X U(1) gauge theory 
(in which no superheavy fields appear) from ~ ~ M 
to/1 ~ m,  using the results of  (a) as an initial condi- 
tion at p ~ M. 

(c) Compare the results of  (b) with the SU(3) 
X SU(2) N U(I)  couplings determined from experiment 
at ordinary energy, including the effects of  radiative 
corrections to one-loop order. 

There is a difficulty in step (a), having to do with 
gauge invariance. In the spontaneous breakdown of  the 
simple group G, a gauge subgroup G, is left unbroken 
(presumably, G is SU(3) X SU(2) X U(1), perhaps 
with extra factors), and we would like the effective ac- 
tion Tto be gauge invariant under G. However, in order 
to calculate the functional integral over the superheavy 
gauge fields in (3), it is necessary to add a gauge-fixing 
term to I [q~, qs], and such terms usually spoil gauge in- 
variance under the unbroken subgroup G as well as un- 
der the rest of  G. For instance, one convenient gauge 
[11] is specified by adding to I a term: 

l 
[gaugefix = - 2 a ~ f d4x f2 (x ;  ~b, qb), (4) 

where 

]ca = ~-1/2 [0#Vg + ig~(X, t a s S ) ]  . (5) 

+4 With renormalized coupfings defined by minimum subtrac- 
tion, the logarithmic derivative of a running coupling gn (la) 
can contain a term of order gm (#)gl(u) ... only if the di- 
mensionality ofg  n (in powers of mass) equals the sum of 
the dimensionalities of gin, gh etc. If there are no masses 
or superrenormalizable couplings, then all couplings have 
negative or zero dimensionality, so the logarithmic deriva- 
tive of a renormalizable coupling of zero dimensionality 
can only involve other couplings of zero dimensionality. (See 
e.g. ref. [9]). Effects of small masses are suppressed by powers 
of the ratio of these masses to M. 
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In the notation to be used here, a runs over all genera- 
tors of  the full gauge group G, Vg are the correspon- 
ding gauge fields; S is a column of  hermitian scalar 
fields; t~s is the matrix representing the ath genera- 
tor of  G on these scalars; X is the column of zeroth- 
order vacuum expectation values of  S; g is the unre- 
normalized gauge coupling constant of  G; and ~ is a 
free parameter characterizing the choice of  gauge. It 
will also be convenient to adopt a notation in which 
lower case Latin letters a, b, c, ... represent values of 
a corresponding to the generators of  the unbroken sub- 
group ~, of  G, while upper case Latin letters A, B, C . . . .  
are values of  a corresponding to the other generators 
of  G. (The gauge fields Va u of  G are thus included 
among the light fields 4~, while the other gauge fields 
V~ are included among the superheavy fields qs.) The 
sum in eq. (4) then splits into a sum over "unbroken" 
indices a, plus another sum over "broken" indices A. 
Now, there is no difficulty with the first sum: the un- 
broken generators satisfy 0 a X = 0, so fa = ~u VUalx/~' 
and since this is independent of  all superheavy fields, 
the term _½fE~f2  d4x in (4) can be ignored for the 
present, and brought back later as a G-gauge fixing term 
when we do functional integrals over the ~ fields. That 
is, in place of  (4), we may fix the gauge of  the super- 
heavy V~ fields by adding to I only a term 

1 
z2x/= --~ f d4x ~ f 2 ( X ;  O, ~ ) .  (6) 

A 

The difficulty is that a l t h o u g h ~ I  is globally invariant 
under the unbroken subgroup G, it is not locally in- 
variant, because the superheavy gauge fields V~ trans- 
form nontriviallyunder G, and an ordinary derivative 
acts on these fields in AI. 

Once the problem is stated in this way, the solution 
is obvious: replace the derivative in (5) with a G cova- 
riant derivative. That is, in place of  (5), take the gauge- 
fixing functions as ,s 

fA = ~-1/2 [b ,V~ + gCAB a V~ Va# + ig~()t, tAsS)I  , 
(7) 

with Cc,~. r the structure constant of  G ,6. This is G- 
gauge covariant, in the sense that under G-gauge trans- 
formation q~ ~ qSa, a/, -+ q~a with infinitesimal param- 

,s This is formally very similar to the introduction of a back- 
ground field gauge in ref. [12]. 

,6 The generators of G are normalized so that the structure 
constants C~.y are totally antisymmetric. 

eters ~2 a (X), the functions fA undergo a linear trans- 
formation 

J~|=0 --i64(x--Y)CABaIB(X; ~' ~)  " 
(8) 

Hence (6) is now G'gauge-invariant- Our prescription 
for the effective action I is then 

exp (iT[4~]) = fd, exp (iI[qS, q5 1 + iAZ [05, qb] ) 

(9) 
X Det X[4~, qs] , 

where AI  is given by eqs. (6) and (7), and X is the 
"matrix" 

XAx,By = [6fA(x;O~,cbs~)/6g2B(y)]fz= 0 . (10) 

This prescription manifestly gives an effective action 
Twhich is gauge invariant under G. But it is not imme- 
diately obvious that the prescription is correct. To see 
the problem, suppose we use the effective field theory 
to calculate S-matrix elements or expectation values 
of gauge-invariant functionals of  q~. We would insert a 
G-gauge-fixing functional 

e p[-l S 
and a corresponding determinantal factor Det Y[~], 
with Yax,by given by a formula like (10), but with un- 
broken indices a, b in place of  the broken indices A,  
B. If  we use (9) to express )"in terms of  the original 
action I, we find just the usual Faddeev-Popov-de  
Witt formula [13] except that Det X Det Y appears in 
place of  the determinant of  the full matrix Zo~,~y ' 
which is defined as in eq. (10) but with general indices 
a,/3 in place of  the broken indices A, B. Fortunately 
this difference does not matter. It is well known that 
the gaussian functional (4) can be replaced with a prod- 
uct of  delta functions of  fo~(x) in the usual FPdW for- 
mula [13], and it can easily be seen that the same is 
true with Det X Det Y in place of  Det Z. Thus we may 
start with the usual FPdW formula, replace the gaussian 
(4) with a product of  delta functions, use eq. (8) and 
the fact that n o w f  a = 0 to show that the off-diagonal 
block ZAx,ay vanishes, so that Det Z = Det X Det Y, 
and then change the product of  delta functions back to 
a gausslan. But even though the final results are the 
same, it is very convenient to have Det X Det Y in place 
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of Det Z, because only in this way can we construct a 
G gauge invariant effective action T. 

This prescription has been used to calculate the ef- 
fective gauge coupling constants in a very general con- 
text ,7. We consider an arbitrary renormalizable gauge 
theory, with a simple gauge group G, and suppose that 
G is spontaneously broken to a direct product G of  
simple (or U(1)) subgroups Gi, giving superlarge mas- 
ses to various gauge bosons, scalars, and perhaps spin- 
r fermions. The unrenormalized couplings gi that are 
associated in Twith these subgroups can be determined 
from the part of  I that is quadratic in the Yang-Mills 
curls Fauv, which (since I is gauge invariant) is given 
by the part o f /quadra t i c  in the ordinary curls DuVav 
- 3vVau. This can be evaluated by calculating the 
graphs with two external Vau lines and only superheavy 
internal lines. In one-loop order, we find +7 

, g3y(2  - D / Z )  [ _ T r ( t 2 M D _ 4 A  ) 
gi = g T  12 ( - ~ z r ~ D ~  

(11) 

-- 21+D/2Tr(t2F M D - 4 )  + (25 - - D ) T r ( t 2 v M ~ - 4 ) ]  . 

Here g is the unrenormalized gauge coupling of  the 
original theory and tis, tiF, and t iv  are the matrices 
which represent any one of  the generators of  Gi on 

• 1 the superheavy scalars, spln-~ fermions, or vectors, 
respectively ,6. The traces are to be taken over all rep- 
resentations of  G containing superheavy particles of  
spin 0, 1, 1; A is a projection operator which excludes 
the Goldstone bosons in these representations; and 
M S, M F, and M v are the mass matrices of  the super- 

1 heavy particles of  spin 0, ~, and 1. Dimensional regu- 
larization [ 13] has been used, with D the dimension- 
ality of  space-t ime• 

The "modified minimum subtraction" renormali- 
zed couplings [10] gi(/a) and g(/a) are defined as the 
remainder terms in gilt D/2-2 and g/aD/2-2, after sepa- 
rating out the pole terms proportional to (D - 4) -1 
+ 7/2 - in x, r4~, where 3' = 0.577 . . . .  Comparing these 
remainder terms in (I 1), we find 

3 
gi(/a) = g(/a) + g(/a)J {Tr [t2~A in (Ms///)] 

967r2 " 

+ 8 Tr [t2F in (X/~-MF//a)] + Tr t 2 (12) 

- 21 Tr[ t  2 In(Mv//a)] } .  

,7 Details of the calculation will be given in a paper now in 
preparation. 

The only approximation which has been made in 
deriving eq. (12) is to neglect terms of  higher order in 
g(/a). This approximation is presumably valid as long 
as the logarithms are not too large, i.e., for/a roughly 
comparable with MS, MF, and M V. For such/a's, it can 
be checked that the/a-dependence ofgi(/a) given by 
(12) is the same as would be calculated directly in the 
effective G-gauge theory. Of course, for/a ,~M, we 
must use the renormalization group equations of  the 
effective field theory rather than (12) to calculate the 
gi(/a), with (12) serving as the initial condition at/a 
~ M .  

Eq. (12) shows that the individual running couplings 
gi(/a) become equal to the coupling g ( /a )o f  the original 
theory at different points/ai, given as suitably weighted 
geometric averages of  superheavy masses, with the 
weighting determined by the G i quantum numbers of  
these superheavy particles. The factor 21 in the last 
term of  (12) is sufficiently large so that it should be 
the superheavy vector boson masses that chiefly de- 
termine the/ai,  especially if there are no superheavy 
fermions. 

For an illustration, let us suppose that the spectrum 
of superheavy gauge bosons is the same as in the 
O(10) model ,a: labelling them by SU(3) multiplicity, 
SU(2) multiplicity, and weak hypercharge, the five 
superheavy gauge multiplets are A(3,2,5/6), B(3,2,1/6), 
C(3,1,2/3), D(1,1,1), and E(1,1,0). Assuming that the 
last term in (12) is dominant, the mass scales where 
the SU(3), SU(2), and U(1) couplings become equal 
to g(/a) are given by 

~2/5~2/5~1/5 - . .  1/2 I/2 
Id3 = " 'A  "'B '"C , 112 - rnA m B ' 

- ~ 5 / 8 ~  1/40~ 1/5 ~ 3/20 
/al - " ' A  ' " B  "*C ' " D  • 

The methods of this paper can also be useful in 
dealing with heavy quarks in quantum chromodynamics 
(QCD). Consider QCD with N -  1 light quarks and one 
heavy quark of  mass M, and construct an effective field 
theory by integrating out the heavy quark. Eq. (12) 
shows that the gauge coupling of  the effective theory 
is equal to the gauge coupling of  the original theory 
at/a = x / ~ M  ,9. By equating couplings at x/~-M, one 
can calculate the two-loop QCD scale factor A N of the 

,8 See the articles by Georgi, Fritzsch, Minkowski, and 
Nanopoulos in ref. [2]. 

,9 This result has also been obtained in unpublished calcula- 
tions by L. Hall. 
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N-quark theory  in terms o f  the corresponding quant i ty  

A N -  1 in the N - 1-quark effect ive theory .  

For  instance,  f o r N  = 5 a n d M  = m b = 5 GeV,  i f  

A 4 = 400 MeV, then  A 5 = 270 MeV. 

Added note. The cons t ruc t ion  o f  effect ive field 
theories o f  various sorts has been considered recent ly  

by B. Ovrut  and H.J.  Schnitzer ,  Brandeis preprint ;  
Y. Kazama and Y.P. Yao,  Michigan preprint  UM HE 

79-40; T. Hagiwara and N. Nakazawa,  paper in prepa- 

ration. 

I am grateful for valuable conversat ions wi th  H. 

Georgi. 

References 

[1] H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 
33 (1974) 451; 
also see: A. Buras, J. Ellis, M.K. Gaillard and D.V. 
Nanopoulos, Nucl. Phys. B135 (1978) 66. 

[2] J.C. Pati and A. Salam, Phys. Rev. D10 (1974) 1240; 
H. Georgi and S.L. Glashow, Phys. Rev. Lett. 32 (1974) 
438; 
H. Georgi, in: Particles and fields (American Institute of 
Physics, New York, 1975); 
H. Fritzsch and P. Minkowski, Ann. Phys. 93 (1975) 
183; 

H. Georgi and D.V. Nanopoulos, Phys. Lett. 82B (1979) 
392; 

F. Giirsey, P. Ramond and P. Sikivie, Phys. Lett. 60B 
(1975) 177; 
F. Giirsey and P. Sikivie, Phys. Rev. Lett. 36 (1976) 
775; 
P. Ramond, Nucl. Phys. B l l 0  (1976) 214; etc. 

[3] D. Ross, Nucl. Phys. B140 (1978) 1; 
W.J. Marciano, Phys. Rev. D20 (1979) 274; 
T. Goldman and D. Ross, CALT 68-704, to be published. 

[4] T. Appelquist and J. Carrazzone, Phys. Rev. 11 (1975) 
2856. 

[5] G. 't Hooft, Nucl. Phys. B61 (1973) 455; B62 (1973) 
444. 

[6] S. Weinberg, Phys. Rev. D8 (1973) 3497. 
[7] See e.g.: P. Bin~truy and T. Schticker, paper in prepara- 

tion. 
[8] S. Weinberg, Phys. Rev. Lett. 43 (1979) 1566; 

F. Wilczek and A. Zee, Phys. Rev. Lett. 43 (1979) 1571. 
[9] S. Weinberg, in: General relativity; an Einstein centenary, 

eds. S.W. Hawking and W. Israel (Cambridge. U.P. 1979) p. 
817. 

[10] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys. 
Rev. D18 (1978) 3998. 

[11] K. Fujikawa, B.W. Lee and A.I. Sanda, Phys. Rev. D6 
(1972) 2923. 

[12] B.S. de Witt, Phys. Rev. 162 (1967) 1195, 1239; Phys. 
Rep. 19 (1975) 295; 
G. 't Hooft and M. Veltman, Ann. Inst. H. Poincar~ 20 
(1974) 69; 
S.J. Honerkamp, Nucl. Phys. B48 (1972) 269; 
R. Kallosh, Nucl. Phys. B78 (1974) 293; 
M.T. Grisaru, P. van Nieuwenhuizen and C.C. Wu, Phys. 
Rev. D12 (1975) 3203. 

[13] L.D. Fadeev and V.N. Popov, Phys. Lett. 25B (1967) 29; 
B. deWitt, Phys. Rev. 162 (1967) 1195, 1239. 

55 


