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Theories with spontaneously broken gauge symmetry but without triangle anomalies can
yield renormalizable models of weak and electromagnetic interactions. We identify and dis-

cuss the class of anomaly-free gauge theories.

Weinberg' and others®3 have suggested the pos-
sibility of constructing a renormalizable and re-
alistic theory of weak and electromagnetic inter-
actions. They propose a class of models in which
the vector boson mediating weak interactions gets
its mass by way of the Higgs phenomenon.* These
models are not naively renormalizable by power
counting since they involve massive vector bosons
coupled to nonconserved currents, but they can be
obtained by formal transformations on the fields
from apparently renormalizable gauge theories.
The original gauge theories involve fields which do
not correspond to physical particles, so they are
not obviously unitary. However, as ’t Hooft has
emphasized, if a theory which is unitary but not
obviously renormalizable is equivalent to a theory
which is renormalizable but not obviously unitary,
then they must both be unitary and renormalizable.®
Hence the theories involving massive intermediate
vector bosons will be renormalizable if they are
equivalent to renormalizable gauge theories.®

The formal transformations connecting the orig-
inal gauge theories with the intermediate vector
boson theories can be justified in a path-integral
formulation of field theory if the gauge theories
can be renormalized in a gauge-invariant way.
Gross and Jackiw” have shown that if the gauge in-
variance is spoiled by the presence of Adler-Bell-
Jackiw anomalies,® these transformations are not
valid and the resulting intermediate vector boson
theory is not renormalizable. Thus, if a model of
weak and electromagnetic interactions based on the
Higgs phenomenon is to be renormalizable, it must
be anomaly-free. The same comments apply if the
model is extended to include strong interactions
mediated by a massive vector gluon.

In this paper, we discuss the construction of
anomaly-free gauge theories in general. The ques-
tion of how the ideas we present fit into realistic
theories will be treated elsewhere.?

Consider the gauge-invariant interaction of a
multiplet of gauge fields W¢, with a multiplet of
spinor fermion fields y,

gFTleszlfabc +gW‘:l.¢_) yuradJ’

|

where the f,, . are the structure constants of the
underlying Lie algebra, the I', are Hermitian ma-
trices which generate a representation of the alge-
bra, and F¢, stands for the covariant curl of W¢.
The Lie algebra is most generally the direct sum
of simple Lie algebras and of completely Abelian
factors. The f,,. may be chosen to be completely
antisymmetric, and must satisfy the Jacobi iden-

tity,
fabcfdcg+fbdcfacg+fdacfbc!=0'

The matrices I', may involve y,, and must satisfy
the commutation relations of the Lie algebra,
[Fa’ Fb]=ifabcrc'

The triangle graph with three W vertices has an
anomaly given’? by a positive multiple of

Agpo=Tr(v{T,, THiTe).

A theory is completely free of anomalies if and
only if all the triangle-graph anomalies are ab-
sent.” Thus, we shall study the circumstances
under which A4,,, is identically zero.

It is convenient to write I, in terms of left- and
right-handed parts,

T,=3(L+y)Ts +3(1-7)T5,

where the T7 are numerical Hermitian matrices
with the same commutation relations as the I',,

(T3, Tol=if apcTc -
Then A,,.=2(A},.— As,.) Where
ave=Tr({T3, T51T2).

We distinguish three varieties of anomaly-free
models.

Case 1. A*= A~ +0. The right-handed and left-
handed anomalies cancel. This cancellation may
take place naturally in the sense that

T;=0T:U",

where U is a fixed unitary matrix. Evidently A"
= A~ and the anomaly is zero. In this case the in-
teraction of the gauge fields with the fermions may
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be rewritten in terms of vector currents alone,
Wrulz L+ ) To + 5 L=y ) To =9y, T5¥,
where

Y=z (L+rp+3 (L =y)Up.

We call such models “vector-like.” The redefini-
tion of ¢ inserts y, into the mass terms of the La-
grangian, where they play no role in producing an
anomaly.

Case 1 can also be realized accidentally: A*
can equal A~ without 7" and 7~ being equivalent.
For example, imagine a one-parameter gauge the-
ory with

T*=[1 0], 1":[(2)“3 0].
01 0 0

In this case, A*= A~=2. Similar accidental can-
cellations may take place in non-Abelian models.

Case 2. A*=A"=0. We call a representation
“safe” if its generators satisfy

Tr{T,, T,}T,)=0.

If both 7% and T~ generate safe representations,
there is no anomaly. We can easily find a large
class of safe representations. A representation is
said to be real if it is equivalent to its complex
conjugate; otherwise it is said to be complex.'® If
T, are the generators of a real representation,
then

T,=-UTU"
for some fixed unitary matrix U. All real repre-
sentations are safe, since
Tr({T,, Ty}T.) = -Tr({TE THTY
= _Tr({Ta’ Tb}Tc) .
A safe representation need not be real. As an

example, consider a one-parameter gauge theory
with

10 0
T={0 1 0
00 _(2)1/3

We will find less trivial examples of this phenom-
enon under Case 3.

Case 3. Safe algebras. This case is already in-
cluded in Case 2, but deserves further discussion.
There are some Lie algebras that can never yield
anomalies: all their representations are safe. For
example, SU(2) has only real representations:
every representation is equivalent to its conjugate.
Thus, SU(2) is safe.

Let us first consider the simple Lie algebras.
We will show in the Appendix that the following sim-
ple Lie algebras are safe:

o

Su(2),

SO(N) for N=5, N #6,

Sp(2N) for N= 3,

G(2), F(4), E(7), and E(8).

The algebras SU(N) for N= 3 are not safe. With the
possible exception of E(6), these are the only un-
safe simple Lie algebras.

The most general safe gauge algebra is a direct
sum of simple, safe algebras, with no completely
Abelian components. Models based on these safe
algebras cannot have anomalies no matter how the
fermions transform under the gauge group.

Unsafe algebras, like SU(3), can also be used to
construct anomaly-free theories, but only if the
left- and right-handed anomalies cancel (Case 1)
or if the representations involved are safe [Case 2;
for SU(3), the 8 or 3+3 are examples of safe rep-
resentations].

So far, we have discussed only anomalies trilin-
ear in the W’s. If there is a vector gluon, there
will also be triangle anomalies involving one gluon
and two W’s. Let us suppose that the gluon cou-
pling is

FG Py,
where P is a numerical matrix not involving y,
which commutes with the gauge algebra; that is,

[P, T3]=[P, T]=0.
The anomaly involving one gluon is given by
A =Tr(P{T}, T;}-P{T;, T;}).

We will consider in detail the important special
case in which P is a projection operator and the
fermions separate into “leptons” with P=0 and
“hadrons” with P=1. Then we can write

Ti=LE+H},
where
L;=(1-P)T:and H} =PT: .

Then the fermions transform under the gauge
group as a direct sum of lepton and hadron repre-
sentations generated by L * and H*, respectively.
In this case, the anomaly is simply

Agy =Tr({H:: H:}-{H;, Hb-})~

Since Tr{H/, H}} is positive semidefinite, the only
way to avoid an anomaly is to obtain a cancellation
of the left-handed and right-handed terms. Al-
though accidental cancellations are again possible,
the most natural anomaly-free models are those in
which H" and H~ are equivalent. As far as the had-
rons are concerned, the model must be vector-like.

We are indebted to Professor F. J. Dyson,
Professor D. Gross, Professor R. Hermann, and
Professor R. Jackiw for helpful conversations.
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APPENDIX

Mehta and Srivastava'® have classified the irre-
ducible representations of the simple Lie groups
according to their reality properties. They find
that the following simple Lie groups have only real
representations:

SU(2)

SO(2N+1) for N> 2

SO(4N) for N> 2

Sp(2N) for N=3

G(2), F(4), E(7), and E(8).

Hence all these groups are safe. The groups
SO(4N +2) for N=1 have complex representations;
but except for SO(6), they are all safe. To show
this, we give a simple proof that SO(N) for N> 17
is safe.

We label the generators of SO(N) by T,,=~T

it
i=1,2,...,N. Then the commutation relations are

[Tis, Tas)==i(0;a T3y = 634 T5; + 053 Ty = 043 Ty) -

T,, transforms like an antisymmetric tensor in the
i and j indices. Then Tr({T,;, T\,}T,,) is an invari-
ant tensor; so it must be a linear combination of
products of Kronecker &’ s. Furthermore, it must
be antisymmetric under the exchanges 7 —j, k<~ [,
or m—n and symmetric under the exchange of
pairs ij—kl, kl—mmn, or ij—mn. But such an
object must be zero. The most general form con-
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sistent with the antisymmetry in {—j, k—1[, and
m--nis

@(8740;m0n; = 0140 1mOnj = 051 0kmOni + 0;108m0n;
- 5“5”5"‘ + Gikalnémﬁ' 6“5,2"6"“ =0;,0p, émj) .

But this is antisymmetric in ij —~ 2, so a must
vanish. Therefore

Tr({Ty;, Tas} T o) =0

and the group is safe. This proof fails for N=6,
since then the trace may involve the completely
antisymmetric tensor of rank 6.

To see that SU(N) for N= 3 are not safe, we con-
sider the representations generated by the Hermit-
ian, traceless NXN matrices. One of the genera-
tors can be taken to be the diagonal “hypercharge,”

—1 I

Since Tr(T,?) #0, none of these groups are safe.

Since SU(4) is isomorphic to SO(6), we understand
in retrospect why SO(6) is unsafe.
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