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We investigate the possibility that radiative corrections may produce spontaneous symmetry
breakdown in theories for which the semiclassical (tree) approximation does not indicate
such breakdown. The simplest model in which this phenomenon occurs is the electrodynamics
of massless scalar mesons. We find (for small coupling constants) that this theory more
closely resembles the theory with an imaginary mass (the Abelian Higgs model) than one with
a positive mass; spontaneous symmetry breaking occurs, and the theory becomes a theory of
a massive vector meson and a massive scalar meson. The scalar-to-vector mass ratio is
computable as a power series in e, the electromagnetic coupling constant. We find, to low-
est order, m (8)/m (V) = (3/2~){e /4m). We extend our analysis to non-Abelian gauge the-
ories, and find qualitatively simQar results. Our methods are also applicable to theories in
which the tree appraximation indicates the occurrence of spontaneous symmetry breakdown,
but does not give complete information about its character. (This typically occurs when the
scalar-meson part of the Lagrangian admits a greater symmetry group than the total Lagran-
gian. ) We indicate how to use our methods in these cases.

I. INTRODUCTION

Massless scalar electrodynamics, the theory of
the electromagnetic interactions of a mass-zero
charged scalar field, has had a bad name for a
long time now; the attempt to interpret this theory
consistently has led to endless paradoxes. ' In
this paper we describe how nature avoids these
paradoxes: Massless scalar electrodynamics
does not remain massless, nor does it remain
electrodynamics; both the scalar meson and the

photon acquire a mass as a result of radiative cor-
rections.

The preceding statement may appear less orac-
ular if we imbed massless scalar electrodynamics
in a larger family of theories with a mass. If we
write the complex scalar fields in terms of two
real fields, y, and y„ the Lagrange density is'

2 = --,'(F„.)'+ —,'(s„q, —eA „y,)'+ —,'(a „q,+ eA„y,)'
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plus renormalization counterterms. (The quartic
self-coupling is required for renormalizability,
to cancel the logarithmic divergence that arises
in the amplitude for scalar Coulomb scattering. )
It is widely believed that if p. is positive, this is
a normal field theory. ' The particle spectrum
consists of a charged scalar particle, its antipar-
ticle, and a massless photon. On the other hand,
if p.

' is negative, the theory is unstable; spon-
taneous symmetry breaking takes place. 4 The
scalar field acquires a vacuum expectation value,
the Higgs phenomenon occurs, and at the end we
are left with a massive neutral scalar meson and
a massive neutral vector meson. '

Our assertion is that the massless theory is
like the second case rather than the first; the only
difference is that the driving mechanism of the
instability is not a negative mass term in the La-
grangian, but certain effects of higher-order pro-
cesses involving virtual photons.

Other interesting things happen in this theory.
The Lagrange density (1.1), with vanishing mass,
involves two free parameters, e and A. . After
spontaneous breaking, the theory is still expressed
in terms of two parameters; these are most con-
veniently chosen to be e and the vacuum expecta-
tion of the field, (rp). The surprising thing is that
we have traded a dimensionless parameter, A., on
which physical quantities can depend in a com-
plicated way, for a dimensional one, (cp), on
which physical quantities must depend in a trivial
way, governed by dimensional analysis. We call
this phenomenon dimensional transmutation, and
argue that it is a general feature of spontaneous
symmetry breaking in fully massless field theo-
ries.

One consequence of dimensional transmutation
is that all dimensionless quantities must be func-
tions of e alone. In particular we find that the
scalar-to-vector mass ratio is given by

m'(S) 3 e2

m'(V) 2v 4n '

plus higher-order corrections. We think that this
is the most interesting result of our analysis; we
believe it is the first time a small mass ratio
(rather than a small mass difference) has been
found as a natural consequence of the presence of
a small dimensionless coupling constant.

The outline of our paper is as follows: Section
II is a brief review of the formalism upon which
our work is based, the method of generating
functionals and effective potentials. Section IG is
a detailed sample computation in the simplest
case, massless quartically self-interacting me-
son theory. Here we show how to treat in our for-
malism the infrared divergences which occur in

massless field theories. Section IV contains the
computations for massless scalar electrody-
namics, and a discussion of their reliability. Sec-
tion V is an explanation of how to apply the re-
normalization group of Gell-Mann and Low to our
problem; we use this method to extend the domain
of reliability of our earlier results. The reader
who just wants to get a general idea of what we
are up to is strongly advised to skip Sec. V, which
is independent of nearly everything else in the
paper. Section VI extends our methods to theo-
ries of multiplets of massless scalar mesons in-
teracting with massless non-Abelian gauge fields
and massless fermions. We obtain closed forms
for the lowest-order effects of virtual gauge par-
ticles in the general case; these forms are valid
even in theories in which there is a negative-mass
term driving symmetry breakdown, and therefore
may be of use to readers who do not share our
fascination with fully massless theories. Section
VII lists our conclusions and makes some specula-
tions.

Two appendixes deal with matters peripheral to
our main line of argument. One shows that certain
interesting properties of our explicit lowest-order
computations persist in higher orders; the other
discusses the sense in which the massless theo-
ries we study are the limits of massive theories
as the mass goes to zero.

II. FUNCTIONAL METHODS AND
THE EFFECTIVE POTENTIAL

In this section we review the functional methods
introduced into quantum field theory by Schwinger,
and extended to the study of spontaneous symmetry
breakdown by Zona-Lasinio. ' It is common to
study spontaneous symmetry breakdown in the so-
called semiclassical approximation, that is to
say, to search for minima of the potential, the
negative sum of all the nonderivative terms in the
Lagrange density. The method of Zona-Lasinio
enables us to define a function, called the effec-
tive potential, such that the minima of the effec-
tive potential give, without any approximation,
the true vacuum states of the theory. Further-
more, there exists a diagrammatic expansion for
the effective potential, such that the first term in
this expansion reproduces the semiclassical ap-
proximation. From our viewpoint, the virtue of
this method is that it enables us to compute higher-
order corrections while still retaining a great
advantage of the semiclassical approximation:
the ability to survey all possible vacua simultan-
eously. Thus we are able to investigate the char-
acter of the unstable but symmetric theory de-
scribed by the same Lagrangian which governs a
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given Goldstone-type asymmetric theory, even in
the presence of renormalization effects. In other
formalisms for computing higher-order correc-
tions to spontaneously broken symmetries, such
investigations are much more difficult. In addi-
tion, we are able to investigate cases in which
the radiative corrections qualitatively change the
structure of the theory (e.g. , by turning minima
in the effective potential into maxima); in other
formalisms, it is much more difficult to detect
the occurrence of such phenomena.

A. General Formalism and Definitions

&&I((z) (p+ Ip-) (2.2)

We can expand W in a functional Taylor series

1W=g — d'x ~ ~ d'x d"'(x ~ x )d(x)" d(» )
n n!

(2.3)

It is well-known that the successive coefficients
in this series are the connected Green's functions;
G "' is the sum of all connected Feynman diagrams
with n external lines.

The classical field, cp„ is defined by

6W
pc(x) p )

(o'
I «x) I og

(O' IO )
(2.4)

The effective action I'((p, ), is defined by a func-
tional Legendre transformation

For notational simplicity, we shall restrict our
selves in this section to the theory of a single
scalar field, y, whose dynamics are described
by a Lagrange density, Z(y, S„(p). The generaliza-
tion to more complicated cases is trivial. Let us
consider the effect of adding to the Lagrange den-
sity a linear coupling of y to an external source,
J(x), a c-number function of space and time:

Z(rp, S„rp) Z+ d-(x)(p(x) .
The connected generating functional, W(d), is de-
fined in terms of the transition amplitude from the
vacuum state in the far past to the vacuum state
in the far future, in the presence of the source
Z(x),

This equation will shortly turn out to be critical
in the study of spontaneous breakdown of sym-
metry. The effective action may be expanded in
a manner similar to that of (2.3):

I = d'x[-V((p, )+-,'(S„(p,)'Z(rp, )+"~ ] . (2.8)

V((p, ) —an ordinary function, not a functional —is
called the effective potential. By comparing the
expansions (2.7) and (2.8), it is easy to see that
the noh derivative of V is the sum of all 1PI graphs
with n vanishing external momenta. In tree ap-
proximation (that is to say, neglecting all dia-
grams with closed loops), V is just the ordinary
potential, the negative sum of all nonderivative
terms in the Lagrange density.

The usual renormalization conditions of pertur-
bation theory can be expressed in terms of the
functions that occur in (2.8). For example, if we
define the squared mass of the meson as the value
of the inverse propagator at z ro momentum, then

d V
doc' 0

(2.9a)

Likewise, if we define the four-point function at
zero external momenta to be the coupling con-
stant, A, , then

d V
4

dPc 0
(2.9b)

Similarly, the standard condition for the normal-
ization of the field becomes

I'= — d x," d »„I'"'(x,~ ~ x„)y,(x,) ~ y,(x„) .(n)

n

(2.'I)

It is possible to show that the successive coeffi-
cients in this series are the II'I Green's functions
(sometimes called proper vertices); I'i"' is the
sum of all 1PI Feynman diagrams with n external
lines. [A IPI (one-particle-irreducible) Feynman
diagram is a connected diagram that cannot be
disconnected by cutting a single internal line. By
convention, 1PI diagrams are evaluated with no

propagators on the external lines. ] There is an
alternative way to expand the effective action:
Instead of expanding in powers of y„we can ex-
pand in powers of momentum (about the point
where all external momenta vanish). In position
space, such an expansion looks like

( ))=)()'(J) —f&'*&(*)w(*)*(2.5) z(0)=I. (2.9c)

From this definition, it follows directly that

6I
( )

=-d(x) . (2.6)

[The alert reader may wonder what happens to
these conditions in massless field theories, for
which the Green's functions have logarithmic sin-
gularities (infrared divergences) when the exter-
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nal momenta vanish. The answer is that they
survive with only minor modifications, as we will
show in Sec. III.]

We are now ready to apply this apparatus to the
study of spontaneous symmetry breaking. Let us
suppose our Lagrange density possesses an in-
ternal symmetry; for simplicity, let us imagine
it to be the transformation y- -p. Then, spon-
taneous symmetry breaking occurs if the quantum
field cp develops a nonzero vacuum expectation
value, even when the source Z(x) vanishes. From
Eqs. (2.4) and (2.6), this occurs if

5r
0

Gap,
(2.10)

for some nonzero value of y, . Further, since we
are typically only interested in cases where the
vacuum expectation value is translationally invar-
iant (that is to say, we are not interested in the
spontaneous breakdown of momentum conserva-
tion), we can simplify this to

dv =0
d97c

(2.11)

for some nonzero value of q, . The value of y, for
which the minimum occurs, which we denote by

(y), is the expectation value of p in the new (asym-
metric) vacuum. It is easy to see that if this
situation is to be stable under small external per-
turbations, the stationary point given by Eq. (2.11)
must be a minimum of the effective potential.

To explore the properties of the spontaneously
broken theory, we define a new quantum field
with vanishing vacuum expectation value,

(2.12a)

This generates a corresponding redefinition of
the classical field,

expansion: first summing all diagrams with no
closed loops (tree graphs), then those with one
closed loop, etc.' Of course, each stage in this
expansion also involves an infinite summation,
but, as we shall show in Sec. III, this summation
is trivial.

Let us introduce a parameter a into our La-
grange density, by defining

(2.13)

We shall now show that the loop expansion is
equivalent to a power-series expansion in a. Let
P be the power of a associated with any graph.
Then it is easy to see that

P=I —V, (2.14)

where I is the number of internal lines in the
graph and V is the number of vertices. This is
because the propagator, being the inverse of the
differential operator occuring in the quadratic
terms in g, carries a factor of a, while every
vertex carries a factor of a '. (Note that it is im-
portant that we are dealing with 1PI graphs, for
which there are no propagators attached to exter-
nal lines. ) On the other hand, the number of
loops, L is given by

L=I- V+1 . (2.16)

This is because the number of loops in a diagram
is equal to the number of independent integration
momenta; every internal line contributes one in-
tegration momentum, but every vertex contributes
a 5 function that reduces the number of indepen-
dent momenta by one, except for one 5 function
that is left over for over-all energy-momentum
conservation. Combining Eqs. (2.14) and (2.15),
we find that

(2.12b) P =L-1, (2.16)

from which it immediately follows that the actual
mass, coupling constant, etc. , are computable
from equations exactly like the Eqs. (2.9), except
that the derivatives are evaluated at (y), rather
than at zero.

B. The Loop Expansion

Knowledge of the effective potential is knowledge
of the structure of spontaneous symmetry break-
down. Unfortunate1y, except for trivial models,
we do not know the effective potential; to calculate
it requires an infinite summation of Feynman dia-
grams, a task beyond our computational abilities.
Thus, it is important to know a sensible approxi-
mation method for V. We shall now attempt to
show that one such sensible method is the loop

the desired result.
The point of this analysis is not that the loop

expansion is a good approximation scheme because
a is a small parameter; indeed, a is equal to one.
(However, it is certainly no worse than ordinary
perturbation theory for small coupling constants,
since the set of graphs with n loops or less cer-
tainly includes, as a subset, all graphs of nth
order or less in the coupling constants. ) The
point is, rather, since the loop expansion corre-
sponds to expansion in a parameter that multiplies
the total Lagrange density, it is unaffected by
shifts of fields [such as in Eq. (2.12)], and by the
redefinition of the division of the Lagrangian into
free and interacting parts associated with such
shifts. The n-loop approximation to the effective
potential thus preserves what we have identified
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as the main advantage of the effective potential
method; it enables us to survey all possible vacu-
um states at once, and to compute higher-order
corrections before deciding which vacuum the
theory finally picks.

III. A SAMPLE COMPUTATION AND THE PROBLEM
OF INFRARED DIVERGENCES

In this section we shall present a detailed corn-
putation of the one-loop approximation to the ef-
fective potential in the simplest possible case,
the theory of a massless, quartically self-inter-
acting meson field. The Lagrange density for
this theory is

& = a(spp) —
( p + a&(st%) kf!9' 4 ( C9'

(3.2a)

To next order (one-loop approximation), we have
the infinite series of polygon graphs shown in Fig.
2, as well as the contributions from the mass and
coupling-constant counterterms. Thus we obtain

d'k ~ 1 2A.y, '
(271) „-g 2n k + ie

(3.2b)

where B and C are, as usual in renormalization
theory, only to be evaluated to lowest order in our
expansion parameter, in this case the loop-count-
ing parameter a.

(3.1)

where A, B, and C are the usual wave-function,
mass, and coupling-constant renormalization
counterterms to be determined self-consistently,
order by order in the expansion, by imposing the
definitions of the scale of the renormalized field,
the renormalized mass, and the renormalized
coupling constant (Not.e that a mass renormal-
ization term is present, even though we are study-
ing the massless theory; this is because the the-
ory posesses no symmetry that would guarantee
vanishing bare mass in the limit of vanishing re-
normalized mass. '}

To lowest order (tree approximation) only one
graph contributes, shown in Fig. 1. Thus we ob-
tain

Certain numerical factors in this expression
require further explanation:

(1) The over-all factor of i comes from the de-
finition of W, Eq. (2.2).

(2) The factor of —,
' in the numerator of the frac-

tion is a Bose statistics factor; interchange of
the two external lines at the same vertex does not
lead to a new graph, and therefore the 1/4! in the
definition of the coupling is incompletely canceled.

(3) The 1/2nis acombinatoric factor; rotation or
reflection of the n-sided polygon does not lead to
a new contraction in the Wick expansion, and
therefore the 1/n! in Dyson's formula is incom-
pletely canceled.

At first glance, the expression (3.2) seems
hideously infrared divergent; each term in the
sum is worse than the one before. However, con-
siderable improvement is obtained if we sum the
series

9 c -B9c
~

pc

d4k

(2.) '" "2i' (3.3)

where, in this expression, we have rotated the
integral into Euclidean space and dropped the i&.
As we see, the apparent infrared divergence has
been turned into a logarithmic singularity at qr,
equals zero. This is reminiscent of the phenom-
enon we would have encountered had we attempted
to compute the radiative corrections to the propa-
gator in this theory. As is well known, these be-
have, to lowest nontrivial order, like P'lnP', had
we been so foolish as to attempt to calculate this
function by computing its power-series expansion
at p' equals zero, we would have found a sequence
of increasingly infrared-divergent terms, just as
in Eq. (3.2}. The two situations are precisely
parallel; in momentum space, we can avoid the
infrared divergences by staying away from vanish-
ing momentum; here, even though all our mo-
menta vanish, we can avoid them by staying away
from vanishing y, .

[Equation (3.3) also has an apparent logarithmic
singularity in the coupling constant. However, as
we shall show immediately, this singularity is
illusory; it is eaten by the renormalization
counterterms. ]

Of course, the integral in Eq. (3.3) is still ultra-

FIG. 1. The no-loop approximation for the effective
potential.

/ X q !l-

FIG. 2. The one-loop approximation for the effective
potential.
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violet-divergent; to evaluate it, we cut off the in-
tegral at O' =A', and obtain

avoided the previous one, by replacing Eq. (2.9c)
by

V= —,y, + —Bcp, +—,Cy,

64 +~ 256 2A ~ 2
(3.4)

Z(M) =1 .
Imposing Eq. (3.7}, we find

3x' xM 11
32 2g 3

(3.8)

(3.9)

where we have thrown away terms that vanish as
A' goes to infinity. We can now determine the
value of the renormalization counterterms by im-
posing the definitions of the renormalized mass
and coupling constant.

We want the renormalized mass to vanish; fol-
lowing Eq. (2.9a), we find

d V

dt's o

This implies that
XA'B=-
32r

(3.8)

(3 8)

Unfortunately, we cannot follow Eq. (2.9b) to
define the renormalized coupling constant; the
fourth derivative of V at the origin does not exist,
because of the logarithmic infrared singularity.
Once again, this is reminiscent of the situation
that exists in momentum space for the same the-
ory. There, the coupling constant can not be de-
fined at the usual mass-shell symmetry point, be-
cause it is on top of the logarithmic singularity in
momentum space; the standard strategy is to de-
fine the coupling constant at some off-mass-shell
position in momentum space, away from the sin-
gularity. Here, we should lose much of the sim-
plicity of our computation if we attempted to ex-
tend it away from vanishing momentum to do ex-
actly the same thing; however, it is easy to do a
parallel thing, and define the coupling constant at
a point away from the singularity in classical-
field space. That is to say, we define the renor-
malized coupling constant by

d4V
=A. ,

dVc
(3.'I)

where M is some number with the dimensions of a
mass. We emphasize that M is completely arbi-
trary, just as is the corresponding quantity in the
momentum-space analysis; different choices for
i' will lead to different definitions of the coupling
constant, different parametrizations of the theory,
but any nonzero 4I is as good as any other. Al-
though we do not need to know the wave-function
renormalization counterterm, A, for the computa-
tion we are now doing, we remark that the standard
condition for defining the scale of the field, Eq.
(2.9c), is afflicted by the same infrared singular-
ity as Eq. (2.9b). We avoid this difficulty as we

Putting all of this together, we find

4t&~ 256„& "M& 6
(3.10)

d'V 3Z' M"
dkp, 32m' M

Equation (3.10) may be rewritten as

(3.11)

V=—,y, '+
+ ln ', , ——+ O(X') . (3.12)

This is simply a reparametrization of the same
function, to the order in which we are working;
it is a change of definitions, not a change of phys-
ics.

(The learned reader may remember that, in mo-
mentum space, where similar arbitrary renorm-
alization masses enter for massless field theo-
ries, there exists a method of "improving" per-
turbation theory to obtain an expansion in which
the independence of the renormalization masses
is exact to every order. This method is the re-
normalization group of Ge11-Mann and Low. It
can be transferred bodily to the formalism we are
using, and we will do so in Sec. V.)

This is our final expression for the effective po-
tential in the one-loop approximation and com-
pletes our sample computation.

Several comments are in order:
(1) This is a renormalizable theory; so we

should expect all dependence on the cutoff to dis-
appear from our final expression for V; this is
indeed the case.

(2}As we remarked earlier, the violent infrared
singularities in the individual diagrams have be-
come a singularity at the origin of classical-field
space. We show in Appendix A that this is true
to all orders in the loop expansion.

(3) More surprisingly, but as promised, the log-
arithmic dependence on the coupling constant has
also disappeared. In Appendix A we show that this
is also true to higher orders; when all the dust of
renormalization has settled, the n-loop contribu-
tion to V is simply proportional to A."".

(4) It is easy to check explicitly that the renor-
malization mass, M, is indeed an arbitrary pa-
rameter, with no effect on the physics of the
problem. If we pick a different mass, M', then
we define a new coupling constant
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(5}Since the logarithm of a small number is
negative, it appears as though the one-loop cor-
rections have turned the minimum at the origin
into a maximum, and caused a new minimum to
appear away from the origin- that is to say, that
the one-loop corrections have generated spontane-
ous symmetry breaking. Alas, appearances are
deceptive: The apparent new minimum occurs at
a value of y, determined by

Aln, = ——m'+O(A. ) .(y)' 32 (3.13)

Since we expect higher orders to bring in higher
powers of X in(y, '/M'), the new minimum lies
very far outside the expected range of validity of
the one-loop approximation, even for an arbi-
trarily small coupling constant, and must be re-
jected as an artifact of our approximation. As we
shall see shortly, though, there do exist physical-
ly interesting theories for which the effective po-
tential has a very similar form, and to which the
same criticism can not be applied. Among them
is massless scalar electrodynamics.

IV. MASSLESS SCALAR ELECTRODYNAMICS

+ —,'(s„y, + eA„(p,)' ——,(y, + cp, ')'

where

+ counterterms, (4.1)

F„„=B,A„- 8„&„. (4.2}

The calculation of the effective potential can be
somewhat simplified if we realize that it can only
depend on

2 — 2 2
9 c =0'zc +9 2c (4.3)

Thus, we need only compute graphs with all the
external lines ~I(),'s. Furthermore, if we work in

We shall now apply the apparatus developed in
the last two sections to massless scalar electro-
dynamics, the theory of a massless charged me-
son minimally coupled to the electrodynamic field.
We write the charged meson field in terms of two
real fields, cp, and y„and write the Lagrange
density as

', (E„„)'+5-(-s„rp, —eA„qr, )'

Landau gauge, where the photon propagator is

. gp v —kgkv/k
p v k2+i (4.4)

then the contribution of any graph of the type shown
in Fig. 3 vanishes. This is because the external
momentum is zero; therefore the momentum of
the internal meson is the same as that of the in-
ternal photon, and vanishes when it is contracted
with the photon propagator.

Thus there are only three classes of graphs to
compute: those of the type shown in Fig. 2, with
a y, running around the polygon, those of the same
type, but with a cp, running around the polygon,
and those shown in Fig. 4, with a photon running
around the polygon. Aside from trivial numerical
factors, all are of exactly the same structure as
the graphs considered in Sec. III. After some
straightforward computation, we obtain

4~ 9 c + 1152' 64' Wc M2 6

(4.5)

This function, like the one discussed in Sec. III,
has a minimum away from the origin. Here, how-
ever, the minimum need not be illusory. In Sec.
III, the minimum arose from balancing a term of
order Z against a term of order )Pin(rp/M); thus,
for small A, , it inevitably occurred at large
1n(y/M), outside the expected domain of validity
of our approximation. Here, even for an arbi-
trarily small coupling constant, we can obtain a
minimum by balancing a term of order A. against
a term of order e ln(y/M). Even though the sec-
ond term formally arises in a higher order of our
expansion than the first, there is no reason in the
world why A. cannot be of the same order of mag-
nitude as e'. Indeed, this is what we should ex-
pect if we think of the quartic meson self-interac-
tion as being forced on us by renormalization, to
cancel the divergence in Coulomb scattering, it-
self of order e4.

We think this point is so important that we will
restate it in slightly different language: At first
glance, the central idea of this paper, that higher-
order effects may qualitatively change the char-

FIG. 3. Some diagrams which do not contribute to the
effective potential in scalar quantum electrodynamics.
The wiggly lines represent photons, the solid lines, spin-
less mesons.

+ 0 ~ ~

FIG. 4. The photon contribution to the one-loop approx-
imation for the effective potential.
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aeter of a physical theory, seems to be in flat
contradiction with the basic idea of perturbation
theory, that higher-order effects are always small
corrections to lower-order ones. This is not so.
In the case under consideration, the first effects
of the electromagnetic coupling, the radiative cor-
rections (Fig. 3) are pro forma of higher order
than the effects of the direct quartic coupling (Fig.
1). However, this says nothing about their actual
relative magnitudes, which can be comparable,
even for very small e and A. .

Therefore, for the time being, we will restrict
ourselves to the case where X is indeed of order
e'. In Sec. V, we shalt. use the renormalization
group to show that all of our results extend with-
out alteration to a more general case, arbitrary
(but still small) e and X.

Under this assumption, the term of order A.
' in

Eq. (4.5} is negligible compared to the other
terms, and we can drop it. Indeed, consistency
demands we drop it, since it is of the same order
of magnitude as the two-loop electromagnetic cor-
rections, which we have not computed. Also,
since the renormalization mass M is arbitrary, to
the order in which we are working [see remark
(4) at the end of Sec. III], we might as well sim-
plify our computational task by choosing it to be
the actual location of the minimum, &y&. Thus
we obtain

realize that dimensional transmutation is an in-
evitable feature of spontaneous symmetry break-
down in a massless field theory; it is nothing but
a reflection of the simple fact that, for a fixed
theory, a change in the arbitrary renormalization
mass leads to a change in the numerical value of
the dimensionless coupling constants.

Thus, we obtain our final expression for the ef-
fective potential

(4.9)

This is parametrized in terms of e and &rp& alone;
all reference to A. has disappeared. If we had
adapted a different definition of A. , the intermediate
equations (4.5)-(4.8) would have changed, but Eq.
(4.9) would have remained unaltered.

From this point on the analysis is the same as
for the familiar Abelian Higgs model. ' After
shifting the field, the mass of the scalar meson
is given by

m'(S) = V "(&q»)

(4.10)

The would-be Goldstone boson combines with the
photon to make a massive vector meson; its mass
is given by the conventional formula

4 ~
9c +64&29 c ln( &2 6

(4.6)
m'(V) =e'&y&' .

Combining these two equations, we find

(4.11)

Since &y& is defined to be the minimum of V, we

deduce
m'(S) 3 e'
m (V) 2w 4v' (4.12)

0= V (&y&)

11e'
=

6 16m' &~&'' (4.7)

or,

33
er (4.8)

Note that the redefinition of the coupling con-
stant associated with shifting the fields has led to
a determination of X in terms of e. Phrased more
dramatically, after we have done the shift, the
final value of A. is independent of the initial value
of A. . This smells suspiciously like some sort of
bootstrap or eigenvalue condition, but this is not
the case: We have not lost any free parameters;
we started out with two (e and A.}, and we have
ended up with two (e and &y&). What is slightly
surprising is that we have traded a dimensionless
parameter, A. , for a dimensional one, &rp&. We
call this phenomenon dimensional transmutation.
The reader who has followed our arguments should

the result announced in the Introduction. We
emphasize that Eqs. (4.8)-(4.11) are exact only in
our approximation. Their right-hand sides have
corrections of higher order in e. Like all other
radiative corrections, these are unambiguously
calculable in principle, although, as the number
of loops increases, they grow rapidly more dif-
ficult to compute in practice. Also, if we were
to go to higher orders, we would have to define
particle masses as the locations of poles in prop-
agators rather than as the values of inverse
propagators at zero momentum, as we have been
doing. This is because the first of these defini-
tions is gauge-invariant„while the second, in gen-
eral, is not. Fortunately, to the order in which
we are working, the two definitions coincide.

To what extent do we expect these yet higher-
order corrections to affect the qualitative behavior
we have found'? Near &rp&, in(y, /&y&) is small,
so we expect the effects of higher orders on the
effective potential in this region to be small,
despite the fact that graphs with more loops in-
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3e'(y)'
128e ' (4.13)

plus corrections which we expect to be small.
Therefore, although graphs with more loops might
turn the maximum at the origin back into a mini-
mum, they cannot turn it into an absolute mini-
mum, and the asymmetric vacuum we have found
remains a local minimum definitely lower than
that at the origin.

troduce higher powers of ln(rp, /(cp)) into the po-
tential along with higher powers of e. For ex-
tremely large values of cp„where the logarithm
becomes large, our entire expansion scheme
breaks down. There may, perhaps, be new min-
ima lurking in this region, but it is beyond the
capabilities of any perturbative computational
method to detect them.

Of course, logarithms grow large for small val-
ues of their arguments as well as large, so our
expansion scheme is as unreliable near the origin
as it is for large y, . Thus, although we should
trust the minimum we have found at (y), we should
not trust the maximum we have found at zero;
graphs with more loops might well turn this into
a minimum again. However, no graph can change
the value of V at zero, which stays firmly fixed
at zero. On the other hand,

BM

8 8
M +P—+ny r'"' x, ~ ~ x„=o .

8$
(5.2)

and

8 8 8
M +P—+yy V=O

BM BX 'By,

(M +P—+yy, + 2y X=0.
BM 8& By

(5.3)

(5 4)

It will turn out to be convenient, instead of work-
ing with V, to work with the dimensionless func-
tion

84@

Bgc
(5.5)

Since dimensionless quantities, such as V ' and
Z, can only depend on y, and M through the ratio
y, /M, it is convenient to define

t =In(y, /M) .
It is also useful to define

(5 6)

These are the familiar differential equations of
the renormalization group. This should be no
surprise, for the argument given in the preceding
paragraph is just the standard argument used to
derive the renormalization group. '

For our purposes, though, it is better to ex-
ploit Eq. (5.1) by applying it to the expansion (2.8).
In this way we obtain

V. THE RENORMALIZATION GROUP
P =P/(1 y), - (5.7)

For simplicity, let us begin by restricting our-
selves to the theory of a self-interacting meson
field, discussed in Sec. III; later we will extend
our analysis to massless quantum electrodynam-
ics. As we have seen, the explicit expression for
the effective action in this theory involves a mass,
M. But, as we have emphasized, this mass is
arbitrary; its only function is to define the re-
normalized coupling constant, A. , through Eq.
(3.7), and the scale of the renormalized field,
through Eq. (3.8). Thus, a small change in M can
always be compensated for by an appropriate
small change in A, and an appropriate small re-
scaling of the field. This statement can be ex-
pressed as an equation

8 8 4+ p—+y d'xy, (x), , v=0,
~QgL&)a

(5.1)

for an appropriate choice of the coefficients P and
y. (By dimensional analysis, P and y can depend
only on z.)

lf we apply Eq. (5.1) to the expansion of F in
terms of 1PI Green's functions, Eq. (2.7), we find
that

and

y = y/(1 —y) (5.8)

In terms of these quantities, Eqs. (5.3) and (5.4)
become

48 —8——+p—+4y v'"(t ~)=0
Bt (5 9)

(
8 —8——+p —+2y z(t, z)=0.
Bt BA.

(5.10)

z(o, z) =1. (s.i2)
If we combine these with Eqs. (5.9) and (5.10), we
find that

1 8y= ——z(0, z), (s.i3)

This is the form of the renormalization-group
equations that we shall use.

In terms of the quantities we have defined, the
renormalization conditions, (3.7) and (3.8), become

v"'(0, ~) =~ (s.ii)
and
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and

p =—' v'"(0, ~) —4y ~ .
at

(5.14)

Thus, if we know the derivatives that occur on the
right-hand sides of these equations, we know P
and y. Of course, even if we are very industrious,
we cannot know these derivatives exactly; at best,
we can only know the first few terms in their loop
expansions. Thus, we can only know the first few
terms in the power-series expansions of P and y.
Nevertheless, as we shall see, even this is useful
information.

For the moment, though, let us imagine we

know P and y exactly. Then it is easy to construct
the general solution of the equation

a —a——+P—+ny F(t, k) =0,
at N

(5.15)

of which Eqs. (5.9) and (5.10}are special cases.
Since this is of the same structure as the much-
studied Eq. (5.2), we will merely describe the con-
struction, and refer the reader to the literature"
for its derivation. W'e begin by finding the func-
tion A. '(t, X) defined as the solution of the ordinary
differential equation

dt
=P(&'), (5.16)

with the boundary condition

z'(O, x) =z . (5.1t)

Then, the general solution of Eq. (5.15) is of the
form

t
F(t, X) =f{X'(t,X))exp n dt y{X'(t, a)), (5.18)

0

where f is an arbitrary function.
For the special cases of Z and V ', the renor-

maiization equations, (5.11) and (5.12), fix the
arbitrary function f. Thus we obtain

t
Z(t, x)=exp 2 dtyg'(t, ~))

0

and

v'"(t, ~) = ~'(t, ~)[z(t, ~)]' .

(5.19}

(5.20)

This is a remarkable result, and shows the power
of the renormalization group; Z and V ' are com-
pletely determined, for all t, in terms of P and
y, that is to say, in terms of their first deriva-
tives at t=o.

We can go further, and use Eqs. (5.19) and (5.20)
to compute how the renormalized coupling con-
stant changes when we change the renormalization
mass. Let us suppose we change our renormaliza-

tion point from y, =M to

c= M

If y' is the new field, then

(s„y',)' = (e„y,)'Z {ln(M'/M), z),
whence

y,' = y, z(ln(M'/M), A. ) '~

(5.21)

(5.22)

(5.23)

By definition, the new coupling constant, A, ', is
given by

a4 Vgt
4Pc pc=

=Z 'V 'i(in(M'/M), X)

= A. '{ln(M'/M), A.) . (5.24)

This elucidates the meaning of the function
~'(t, x).

It is easy to extend all this analysis to a general
massless renormalizable field theory: The re-
normalization group equations will have one P-
like term for every coupling constant and one y-
like term for every field. Equation (5.16) will be-
come a system of coupled ordinary differential
equations, one for each coupling constant. Other-
wise, all will be as before; those functions in the
effective action that fix the renormalization con-
ditions will be determined in terms of their de-
rivatives at the renormalization point, and we will
be able to trace out the changes in the renormal-
ized coupling constants as the renormalization
point changes.

So much for the dream world in which we know

P and y exactly. What about the real world, in
which we know them only to lowest order 7 Let us
suppose that we construct an approximation for
X'(A, , t) by integrating, from some small X, an ap-
proximate version of Eq. (5.16), obtained by re-
placing P by its one-loop approximation. We
would expect this approximation to be reliable for
that range of t for which A. '(t, X) remains small,
for, in this domain, the terms we have neglected
by truncating the power series for P are indeed
small compared to the terms we have retained.
However, if, for some range of t, X'(t, x) becomes
large, the approximation becomes evident non-
sense, for then the terms we have neglected are
large compared to the terms we have retained. If
we are lucky, the approximation for X' will stay
small for a large range of t, and we will obtain
an improved approximation —"improved" in the
sense that it is valid over a larger range of t.
(It is important to remember that the domain of
reliability of the one-loop approximation is de-
termined not only by the condition that the cou-
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pling constant be small, but also by the condition
that the logarithmic factor t not be too large. It
is the latter restraint that the renormalization
group may allow us to escape, not the former. )

Let us apply these ideas to the one-loop approx-
imation in self-interacting meson theory, dis-
cussed in Sec. III. Differentiating Eq. (3.10), we

find that

gin by expanding the effective action and retaining
only those terms which define the renormalization
constants:

r= d'x —Vq, --,'H q, F„., '

+ 2~(pc)[(sp&c —e&pc p2c)

(4) 3A, t
V =A, + 62) (5.25)

+ (8p9'2 + e+
p 9'x ) ]+ ' ' ' } ~

(5.32)

Z=1 . (5.26)

in the one-loop approximation. In Sec. III, we did
not compute the one-loop corrections to Z; how-
ever, the computation is straightforward, and the
result is that, in the one-loop approximation,
they vanish:

Note that the last group of terms has a common
coefficient function, Z; this is a consequence of
gauge invariance. We impose the same renormal-
ization conditions on Z and V as before; in addi-
tion, we fix the scale of the renormalized electro-
magnetic field by

Thus, in this approximation, H(M) =1 . (5.33)

y=O (5.27) We have computed all these functions in the one-
loop approximation. The results are

and

The approximate differential equation is

dA. ' 3A. '

dt 16'2

Its solution is

(5.28)

(5.29) and

(4) 5X2 9e4

3e2Z=1+, t,
8w

(5.34)

(5.35)

(5.36)

A.

1 —3gt/16v' ' (5.30)

From this we obtain the improved approximation
for the effective potential,

where t, as before, is In(cp, /M).
The renormalization-group equation for this

theory is

8 8 8
M— +P +P,—+y

V(4)
1-3zt/16v' ' (5.31)

Note that this agrees with the one-loop approxima-
tion in its expected domain of validity ((A( «1,
(Xt~«l). However, Eq. (5.31) is valid in a much
larger range of t, including all negative t, for in
this range A,

' remains small. In Sec. III, we found
that the one-loop corrections turned the minimum
at the origin of classical-field space into a maxi-
mum, but we mistrusted this, because the region
near the origin (large negative t) was outside the
domain of validity of the approximation. We now
see that our mistrust was justified; Eq. (5.31) is
a good approximation near the origin, and it pre-
dicts a maximum, not a minimum. In Sec. III we
also found a phony minimum at large t; in place
of this, Eq. (5.31) has a pole at large t, but it is
equally phony —this is a region of large A. ', where
our new approximation is as untrustworthy as our
old one.

%e now turn to scalar electrodynamics. We be-

+y cp„+ (p, I =0.

(5.37)

Applying this to Eg. (5.32), we deduce that

P =-ey (5.38)

8 —8 — 8—+P—+P —+2y Z t, p, e =0, (5.40)

and

(
8 —8 — 8——+ P—+ P —+ 2y H(t, A. , e) = 0 .8t 8A. ' 8e

Here the barred coefficients are defined as before,

This is the reflection in our formalism of the old
result that Zy Z2 We also find that

8 —8 — 8
+ P—+ P,—+ 4y V'"(t, a, e) = 0, (5.39)
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by dividing by (1 —y).
Evaluating these equations at the renormaliza-

tion point, we obtain the one-loop approximation
to the coefficient functions:

and

y = 3e'/16 m',

p = (~sr' —3e"x+ 9e')/4v',

P, = e'/48m' .

(5.42)

(5.43)

(5.44)

Thus, the approximate differential equations we

must solve are

and

de = e "/48m',
dt

(5.45)

dz'
=( x" 3e"x'+9e")/4w' .

dt
(5.46)

The first of these can be solved trivially, by
quadrature:

2e
1 —e't/24m' (5.47)

The second looks more fearsome; however, if we
define

R = A. '/e",
Eq. (5.46} becomes

(5.48)

e", =5fP-19ft+54.
d e")

This can also be solved by quadrature:

A.
' =~o e"[v'719 tan(~4719 Ine' + 8}+19],

(5.49)

(5.50)

where 8 is an integration constant, to be chosen
such that A, '=A. when e'=e.

We can hardly praise these solutions for their
beauty. What about their utility? As t becomes
large and positive, e' becomes large, so our ap-
proximation certainly breaks down in this region,
just as in the preceding case. As t becomes
large and negative, e' stays small, but A.

' be-
comes large, since the argument of the tangent
inevitably passes through a multiple of n. Thus
our approximation also breaks down in this re-
gion; unlike the preceding case, we cannot use
the renormalization group to obtain an approxima-
tion to the effective potential that is valid near
the origin of classical-field space as well as near
the renormalization point.

Nevertheless, all is not lost; we can still ob-
tain useful information. For we can make the
argument of the tangent change by 2w by varying
t so as to move e" through a very small range.

(By the crudest estimates, the range from —,'e' to
2e' is more than sufficient. ) In the course of this
variation, X' traverses the entire real axis. Of
course, we cannot trust the further reaches of
this excursion, but we can trust it for the region
of smaLl A. '.

Thus, even for very small e, we can move A.

from any small value to any other small value by
a change in the renormalization mass that does
not change the order of magnitude of e. This
means that the restriction we imposed in Sec.
IV- that X be of the order of magnitude of e'- is
in fact no restriction at all. For, if A. is not of
the order of magnitude of e', we can always make
it such, by appropriately changing the renormal-
ization mass. Thus, the effective potential for
massless scalar electrodynamics develops a
minimum away from the origin, and spontaneous
symmetry breakdown occurs, for arbitrary
small e and A. .

Vl. NON-ABELIAN GAUGE THEORIES

In this section we compute in closed form the
one-loop corrections to the effective potential in
a general massless renormalizable gauge-field
theory. The expressions we obtain involve traces
of functions of certain matrices constructed from
the coupling constants of the theory. For any
given theory, it is simple to compute these quan-
tities, and it is then a straightforward calculus
exercise to find the minima of V. Unfortunately,
we do not have enough skill in the manipulation
of arbitrary representations of arbitrary gauge
groups to be able to give even a qualitative dis-
cussion of the structure of spontaneous symmetry
breaking in the general case; therefore we re-
strict our detailed discussion to three specific
models for which we have done explicit computa-
tions. One is a Yang-Mills triplet coupled to a
scalar isovector; another is the same triplet
coupled to a scalar isotensor; the third is a
massless version of the Weinberg-Salam theory
of leptons. These display a range of interesting
phenomena, but in their gross features they are
all the same as massless scalar electrodynam-
ics: Radiative corrections induce spontaneous
symmetry breaking, and all mass ratios are com-
putable in terms of dimensionless coupling con-
stants.

We should emphasize that all of our analysis is
on the level of that of Sec. IV. In particular, this
means that we will always assume that the quartic
scalar self-couplings are of the order of magni-
tude of e'. In Sec. V me mere able to remove this
restriction from our study of massless scalar
electrodynamics with the aid of the renormaliza-
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tion group, but we have not yet extended these
methods to the non-Abelian case.

A. Computation of the Effective Potential

The class of Lagrangians we will study involves
a set of real spinless boson fields, which we de-
note by qP, a set of Dirac bispinor fields, which
we denote by 4 ', and a set of real vector fields,
which we denote by A'„. The index a runs over
the appropriate range in each case. Sometimes
we will find it convenient to assemble all the spin-
less fields into a vector, which we denote by y,
All these fields are massless, and the interac-
tions between them are of renormalizable type:
quartic self-interactions of the spinless bosons,
Yukawa-type boson-fermion couplings (not nec-
essarily parity-conserving}, and minimal gauge-
invariant couplings of the vector fields.

If we quantize the theory in Landau gauge, the
only graphs we need consider are polygon graphs
with either spinless mesons (Fig. 2), gauge me-
sons (Fig. 4), or fermions (Fig. 5) running
around the loops. Note that in the fermion sum,
only graphs with an even number of external lines
occur; this is because the trace of an odd number
of y matrices vanishes. These are not the only
internal lines in a non-Abelian gauge theory;
there are also the famous ghost fields. " How-
ever, in Landau gauge, these have no direct cou-
pling to the spinless fields, and thus need not be
considered for our computation. (Of course, we
would have to take account of ghost fields if we
were to compute terms in the effective action
that depend on classical gauge fields, or if we
were to compute two-loop corrections to the ef-
fective potential, or even if we were to work in
a less well-chosen gauge. )

Thus, the one-loop approximation to the effec-
tive potential can be written as a sum of terms:

V(rp, ) = V, + V, + Vf + V, + V, ,

where V, is the zero-loop approximation, V, , V&,
and V~ are the contributions from spinless-me-
son, fermion, and gauge-field loops, and V, is
the contribution from coupling-constant-renormal-
ization counterterms. V, is a quartic polynomial
determined in terms of the other four terms once
we have stated our renormalization conditions.

To compute V, , we need to know the vertex that

occurs at the corner of a polygon graph, connect-
ing an internal meson of type a with one of type b.
This vertex, shown in Fig. 6, is given by

a'y,
W, (i4,) = (6.2)

Vis a real symmetric matrix and a quadratic
function of y, . To compute the n-sided polygon,
we must sum over all possible internal mesons.
This corresponds to multiplying the W matrices
around the loop and then taking their trace. Thus,
copying directly from Sec. III, we find that

V, = &4, TrLW'(y, ) lnW(y, }j, (6.3)

plus cutoff-dependent quartic terms, which we
absorb in V, .

The contribution of the gauge-field loops may
be computed in a similar way. We define a ma-
trix M'(y) in terms of the nonderivative coupling
of gauge fields to spinless mesons:

2 = ~ ~ ~ + -'Q M'(q )A A" + ~ ~ ~ .
ab

(5.4)

M'.n= r.zn(T;e T'~m} (6.5)

where T, is the representation of the ath infini-
tesimal transformation of the gauge group, and

g, is the coupling constant of the associated gauge
field. (If the gauge group is simple, all the g's
are equal; otherwise, this is not necessarily the
case. ) Following the same reasoning as before,

Wob (Pc)

&c

mob (&P~)

0 b

M~ob (&c)

Like O', M' is a real symmetric matrix and a
quadratic function of y. We call this matrix M'
because, to first nonvanishing order M', (g)) is
the square of the vector-meson mass matrix. Be-
cause the vector mesons are minimally coupled,
we can write

+ rs 1& +

FIG. 5. The fermion contribution to the effective po-
tential. The directed lines represent fermions.

FIG. 6. The vertices which are needed to compute the
one-loop appraximation to V(y, ) in a general massless
gauge theory. These are to be inserted in the vertices of
the polygon graphs of Figs. 2, 4, and 5.
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we find that B. First Model: Yang-Mills Fields and a Scalar Isovector

V = 2Tr[M (cp, )lnM (y, )], (6.6)

maa Aaa+ iBa~ y5 . (6 6)

(We use a Hermitian y, .) A and B are Hermitian
matrices and linear functions of y. To first non-
vanishing order, m((y}) is the fermion mass ma-
trix, whence its name. We can exploit the fact
that only graphs with an even number of internal
fermions contribute to the sum by grouping terms
in the matrix product pairwise:

1 1 1
~ ~ ~ pg p7g ~ ~ ~ ~ ~ ~ ppg pg 0 ~ ~ (6.9)

The sum is then seen to be the same as in the
other cases, except, of course, for the standard
minus sign for fermion loops, "and we obtain

V~ ==,Tr[(m m (y,})'ln(m m" (y,))],

plus quartic terms, which we absorb in V, . Note
that in this equation the trace runs over Dirac
indices as well as internal indices.

The fermion contribution to the effective poten-
tial has opposite sign to the other terms; this
means that the effect of fermion closed loops can
make shallower, or even eliminate altogether,
minima caused by the other terms. However, for
the only model with fermions we shall consider
(the Weinberg-Salam theory of leptons), this ef-
fect is completely negligible, because, as we see
from Eqs. (6.6) and (6.10), Vf is smaller than V,
by a factor on the order of the fourth power of the
fermion-to-vector-meson mass ratio. For this
theory, this ratio is so small that the effect of
fermion loops is tiny even when compared with
that of two-loop electromagnetic corrections.
We should bear in mind, though, that if we build
a model in which the Yukawa couplings are such
that superheavy fermions appear, with masses
comparable to the vector-meson masses, this
effect can be important.

plus quartic terms, which we absorb in V, . The
extra factor of three in this equation comes from
the trace of the numerator of the Landau-gauge
propagator.

The contribution of the fermion loops may be
computed in a similar way. We define a matrix
m(p) in terms of the Yukawa coupling:

2 = ~ ~ ~ —Q 4', m, , (rp)+, + ~ ~ ~ .
ab

The matrix m is a matrix in Dirac space as well
as in internal space:

We now turn to our first model, the theory of a
triplet of SU(2) gauge fields minimally coupled to
a set of scalar mesons transforming according
to the vector representation of the group. We as-
semble the scalar fields into a vector in the stan-
dard way. By SU(2) invariance, the effective po-
tential can depend only on the length of this vec-
tor; therefore it suffices to compute it in the case
when only the third component is nonzero:

(C let 'P2cs 93c) ( 1 1 9 c) (6.11)

We begin by computing V, , since, from our ex-
perience with the Abelian theory, we expect this
to be the dominant term in the effective potential.
From Eq. (6.5}we find that

2 (6.12)

where e is the gauge-field coupling constant; all
other entries vanish. Thus we find, from Eq.
(6.6), that

3e
V =32, g, in@,

w
(6.13}

This is, except for the coefficient, of exactly the
same form as the corresponding term in massless
scalar electrodynamics, Eq. (4.5). Thus, the
discussion of its minimum, and of the effects of
shifting the renormalization point to the minimum,
is the same as that given in Sec. III.

Hence, spontaneous symmetry breakdown oc-
curs, and the field develops a vacuum expectation
value. The vacuum expectation value is neces-
sarily invariant under a U(1) subgroup of the
original SU(2) group, which we identify with elec-
tric charge. The gauge field associated with this
subgroup (the photon) remains massless, while
the two other (charged) gauge fields eat the corre-
sponding scalar mesons and acquire a mass. The
ratio of the masses of the charged vector mesons
to that of the remaining (neutral) scalar meson is
given by

m'(S) 2 e'
m'(V) v 4v ' (6.14)

and the quartic scalar coupling constant is given
by

33e'
A, =

4 2 (6.i6)

Because the potential is twice as great as that of
the Abelian theory, these formulas differ by a fac-
tor of two from the corresponding ones we found
in Sec. IV. Since in this model a massless photon
remains after symmetry breakdown, it is not
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C. Second Model: Yang-Mills Fields and

a Scalar Isotensor

Our second model is the same as the first, ex-
cept that the scalar fields transform according to
the five-dimensional (tensor) representation of
SU(2)." We represent these in the standard way
as a traceless symmetric matrix. In computing
the effective potential, we can, with no loss of
generality, choose this matrix to be diagonal:

0 0

0 b 0

0 0 c)
(6.16)

where

a+ b+ c=0 . (6.17)

foolish to identify e with the actual electromagnet-
ic coupling constant; if we do this, Eq. (6.14) pre-
dicts that the charged vector mesons are about
twelve times more massive than the neutral scalar
meson.

(6.18)Tr y' = 2(Tr rp')' .
Thus there is only one term in Vo.

[Digression: This has an amusing consequence,
for even if we had destabilized the vacuum by hand,

by introducing a negative mass term in the Lagran-
gian, V, would still possess a larger symmetry
than SU(2}, to wit, SO(5)." Thus, even in this
case, if we analyzed the theory in the semiclassi-
cal (no loop) approximation, we would be in trouble
for two reasons: (1} We would only determine a
+ b'+ c' at the minimum, and would have no idea
how to fix the other SU(2) invariant, abc; (2) even
if we picked a vacuum expectation value arbitrari-
ly from this over-rich set, we would find that the
doubly charged scalars were spurious Goldstone
bosons, and had zero mass. To pick the right
vacuum, and to obtain a nonzero mass for the
doubly charged scalars, it would be necessary to
compute the effects of gauge-field loops. Moral:
The techniques developed in this paper may be of
use even to someone who thinks that all this talk
of massless scalars is nonsense. ]

To compute V, we begin by calculating the vec-
tor-meson mass-squared matrix:

We would be especially happy if the minimum of
the effective potential corresponded to a situation
for which

((b- c)'
2 2+2I 0 (c- a)' 0

(a- b)')

(6.20)

1a=b=-&c . (6.18) Hence,

For, in this case, there would remain an unbroken
U(1) subgroup of the original SU(2) group, which
we could identify with electric charge, and as-
sociated with this subgroup, a massless vector
meson, which we could identify with the photon.
The other particles remaining in the theory would
be a pair of charged vector mesons, a neutral
scalar, and a pair of doubly charged scalars.

We emphasize that there is nothing in the sym-
metry properties of this theory that guarantees
that the minimum of V will obey Eq. (6.18). Thus,
in contrast to the preceding model, if a massless
photon emerges, it will be as a consequence of
detailed dynamics, not just of trivial group theory.

We now turn to the actual computation of the ef-
fective potential. We begin by investigating the re-
strictions placed by SU(2) symmetry upon the
zeroth-order potential V,. In contrast to the pre-
vious case, a cubic interaction, Try', is allowed
by the group. To simplify our problem, we ex-
clude this by adding to our continuous symmetry
group the discrete transformation y--p. There
are apparently two possible quartic couplings,
Try' and (Try')'; however, these are related by
the tracelessness of y'.

4

V~=
6 2(a —b) ln[(a —b)'/p']

+ cyclic permutations, (6.21)

V =Vo+Vg3e', (a- b)' 1
, (a-b)' ln

16@2

+ cyclic permutations

From this expression it is evident that

a=b = 3p, ,
2C=-3' ~

(6.22)

(6.23)

is a minimum of V, for it is a minimum of two of

where p' is an arbitrary renormalization mass.
Just as before, a change in p,

' can always be com-
pensated for by a change in the quartic coupling
constant, A. . Just as in Sec. IV, we now assume
that X is of the order of magnitude of e", then V,
is small compared with V, , and we can neglect it.
Further, we can always adjust p.

' to give the quar-
tic coupling any desired value; we choose to do
this such that
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the three terms in Eq. (6.22) and a maximum (but
with vanishing second derivative) of the third. It
is possible to show that this is the only minimum
of V (other than those obtained from it by trivial
permutations), but we will not give the proof here.
Note that this is of the form (6.18); thus, electric
charge remains a manifest symmetry and there is
a massless photon.

The mass of the charged vector follows directly
from (6.20):

sons form a complex doublet; the Lagrangian con-
tains a negative mass term for this doublet, which
forces spontaneous symmetry breaking. Because
of the symmetry, we can, with no loss of general-
ity, arrange that only one component of the doublet
has nonzero vacuum expectation value, and we can
choose this value, which we denote by (y), to be
real. After symmetry breaking, the vector me-
sons are a massless photon, with coupling

m'(V) = 2e'p, ' . (6.24) g +g' (6.30)

Fortunately, to compute the scalar masses, we
need only consider diagonal perturbations in Eq.
(6.16):

two massive charged mesons, 8", identified with
the intermediate bosons of the weak interactions,
with masses

S D
3

S D
3 vY

(6.25)

m'(W') =-,' g'(q)',
and a massive neutral meson, Z, with mass

m'@) =-'(g'+g")(c)' .

(6.31)

(6.32)

2 p. 2SC=-
3 vY'

and

m (S) =9e g'/2v

m (D) =3e p. /2v

(6.26)

(6.2V)

Whence,

m'(S)
m'(D)

and

(6.28)

where S is the neutral scalar and D is a Hermitian
combination of the two charged scalars. [The
square roots are to give these fields the right nor-
malization in the kinetic energy, —,

' Tr(e„ye y).]
Expanding (6.22), we find

There is a.iso a neutral scalar meson, S, the only
surviving member of the original complex doublet;
its mass is not determined in terms of the other
masses in the theory. Also, of course, there are
the leptons, but for our immediate purposes these
are of no interest, since they are just the usual
electron, muon, and neutrinos, and by the remark
at the end of Sec. VIA, they make a negligible con-
tribution to the effective potential.

We want to investigate what new information we
obtain if we assume that, before symmetry break-
down, the scalar masses are zero, and that sym-
metry breakdown is driven by radiative correc-
tions. Playing the game just as before, we see
that the important thing is to compute V, . For-
tunately, the matrix M'is given to us, in diagonal
form, by Eqs. (6.31) and (6.32); all we have to do
is to substitute y, for (y). Thus we obtain

m'(D) 3 e'
m'(V) v 4~ (6.29) V, =1024, [2g'+ (g'+g")'] y, 'In@, ', (6.33)

3

[We should note that had we put a negative mass
term in the theory, as discussed in the preceding
digression, Eq. (6.29) would still have survived,
because the no-loop approximation would still have
made no contribution to the mass of the doubly
charged scalars. ]

D. Weinberg-Salam Theory of Leptons

The model of leptons proposed by Weinberg and
Salarn" has been so much discussed in the recent
lite "ature that, rather than explaining it in detail,
we shall just remind the reader of some of its
salient features. The gauge group is SU(2)xU(1);
the coupling constant of the triplet gauge fields is
called g, that of the singlet g'. The spinless me-

plus quartic terms, which are of no importance.
Comparing this with our previous work, we im-
mediately find

m'(S) =,[2g'+ (g'+g")']( y)'
3

, [2g'm'(W')+(g'+g")m'(Z)] .
3

(6.34)

The important observation is that this puny re-
lation is al/ the new information we obtain. This
is what we would expect from simple parameter
counting. We have added one new assumption-
vanishing scalar mass before symmetry break-
down- and have obtained one new relation- a pre-
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diction of the scalar mass after symmetry break-
down. This is obviously what will happen if we

apply our ideas to any of the current horde of
gauge theories of the weak and electromagnetic
interactions. Since these theories typically either
contradict experiment whatever the scalar masses,
or have so many free parameters that they can be
made to fit experiment whatever the scalar mass-
es, we do not believe that the ideas developed in
this paper will make a significant contribution to
current weak-interaction phenomenology. Never-
theless, some day the grail may be found; theo-
rists may discover a simple and compelling model
with only a small number of adjustable parameters
that fits experimental reality. If and when this
happens, it will be interesting to see what con-
straints are put on the parameters of this model
by the condition that the theory be fully massless.

VII. CONCLUSIONS AND A SPECULATION

(1) We hope that the reader who has followed our
arguments will now agree with our basic conten-
tions: that radiative corrections can be the domi-
nant driving force of spontaneous symmetry break-
ing; that, at least for weak coupling constants,
this possibility can be investigated in a systematic
way; and that, in particular, massless scalar
electrodynamics undergoes radiatively induced
spontaneous symmetry breakdown.

We are very much aware that we are exploring
unconventional ideas and that there may be some
basic flaw in our whole approach which we have
been too stupid to see. Barring this possibility,
though, we believe we have done an honest com-
putation by the standards of perturbation theory,
being careful of our approximations and not dis-
carding terms obviously large compared to those
retained. We therefore feel that our computations
have the same a priori plausibility as any other
perturbative computation in a renormalizable field
theory with weak coupling constants, such as, for
example, the computation of the anomalous mag-
netic moment of the electron.

(2) Since our work does lead to the determina-
tion of some coupling constants in terms of others
[for example, Eq. (4.8)], it is natural to ask what
connection it has with the generalized eigenvalue
condition, "which also seeks to determine coupling
constants by demanding that, in the real world,
the P coefficients in the renormalization-group
equations vanish. The answer is that the two ideas
cannot both be true. For, if the P's vanish, so do
the P 's, by Eq. (5.7). If the P 's vanish, the effec-
tive potential is a simple power. If the effective
potential is a simple power, then its only possible
minimum is at the origin.

(~) As we explained at the end of Sec. VI, we do
not believe that our ideas will be of any immediate
use in the currently popular gauge theories of weak
and electromagnetic interactions. These theories
typically contain so many arbitrary parameters
that the additional constraints imposed by demand-
ing that the scalar mesons be massless before
symmetry breakdown offer only a slight improve-
ment. Nevertheless, if a model is found that sat-
isfies experiment and has only a small number of
free parameters, these constraints may play an
important role. Meanwhile, as shown by the model
of VI B, some of our computational techniques
may be of use even in theories in which symmetry
breakdown is driven by a negative mass term, to
compute the masses of spurious Goldstone bosons.

(4) The speculation: A bold way of interpreting
our results would be to say that nature abhors
massless particles with long-range interactions
between them, and escapes these abhorrent sys-
tems by the Goldstone-Higgs mechanism, which
gives the particles a mass, or makes the interac-
tions short-range, or both. If we accept this
statement, then we should expect symmetry break-
down even in theories mthout fundamental spinless
bosons, such as massless spinor electrodynamics,
or the theory of non-Abelian gauge fields coupled
to massless fermions.

Unfortunately, we know of no computational
scheme, analogous to the one we have used, to
study whether this in fact happens, even for weak
coupling constants. The trouble is that the object
which we would expect to develop a vacuum ex-
pectation value is a composite field, like 0 4. In
principle, there is no obstacle to extending the
formalism of Sec. II to such objects'. the formal
machinery of the functional Legendre transforma-
tion does not depend on whether we couple our ex-
ternal sources to fundamental or composite fields.
In practice, though, we have not been able to find
a sensible approximation method on this idea.

Nevertheless, we are speculating, so let us as-
sume spontaneous symmetry breakdown does take
place in such theories. Then we are led to a re-
markable situation: As we have seen, when sym-
metry breakdown occurs in a fully massless field
theory, so does dimensional transmutation; one
dimensionless coupling constant disappears, to be
replaced by a mass parameter. But spinor electro-
dynamics (or, for that matter, any theory of gauge
fields and fermions based on a simple Lie group)
has only one dimensionless coupling constant to
begin with. Thus, after symmetry breakdown, we
are left with no free dimensionless coupling con-
stants.

Thus ue are led to a Program for comPuting the
fine-structure constant. (We emphasize that this
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is not the same as the eigenvalue condition [see
(2), above]. ) To propose such a program is an

act of hubris; but we can moderate our ambition
and imagine working in a theory in which the gauge

group has two simple factors, and thus there are
two coupling constants. In this case one would

survive, and the fine structure constant would still
be a free parameter, but all mass ratios (such as
the muon-electron ratio) could be computed in

terms of it.
Even this last speculation is certainly very am-

bitious, and therefore most likely false. Neverthe-

less, it would be very pleasant to be able to in-
vestigate the question in a quantitative way. Thus
we feel that the outstanding theoretical challenge
posed by our work is to extend our methods to the-
ories without fundamental spinless fields.
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APPENDIX A. MORE LOOPS

1. The Disappearance of Infrared Divergences

In Sec. III we were able to show that the infinite
set of one-loop graphs for the effective potential
could be summed to give a single integral. We
shall now extend this result, and show that the sum
of all n-loop graphs can be expressed as a finite
sum of n-tuple integrals. Just as in the one-loop
case, each of these integrals will be obtained by
summing an infinite series of graphs, each of
which is infrared-divergent; however, the only
relic of the infrared divergences remaining in the
sum will be a singularity at the origin of classical
field space.

For simplicity, we begin by restricting ourselves
to the self-interacting meson theory of Sec. III.
For a general graph contributing to the effective
potential, we define a type-n vertex to be one with
n internal lines (and therefore, 4n external lines)
attached to it, and denote the number of type-n
vertices in the graph by V„. For a 1PI graph, all
vertices are either type-two, type-three, or type-
four. The total number of vertices is given by

V = V2+ V3+ V4 . (A1)

Since each internal line has two ends, and each
end terminates on a vertex, the total number of
internal lines is given by

2I =2V, + 3V, + 4V, .
Thus, the number of loops in the graph is

L=I —V+1

—~V +V +1.

(A2)

(As)

(A4)

This rule may readily be extended to massless
scalar electrodynamics; the only difference is

FIG. 7. Above: The only two-loop prototype graphs
in self-interacting meson theory. These are V4

——1,
VS=0, and V4=0, V3=2. Below: Two of the infinite
series of two-loop graphs obtained from these by insert-
ing type-two vertices on the internal lines.

Thus, for any fixed L, there exist only a finite
number of graphs with L loops and no type-two
vertices. We shall refer to these as prototype
graphs. All other L-loop graphs are generated
from the prototype graphs by sticking an arbitrary
number of type-two vertices onto the internal lines
of the prototype graphs. Figure 7 shows this pro-
cess for the two possible two-loop prototype
graphs.

From this viewpoint, the one-loop graphs of Sec.
III are a degenerate case; for them the prototype
graph is a graph with no vertices, a simple circle.
This is responsible for the peculiar cyclic sym-
metry of these graphs, which led to the factor of
1/n in Eq. (3.2b). For all other cases, the ends of
the internal lines in the prototype graph are pinned
down to prototype vertices. Therefore, the inser-
tion of type-two vertices does not introduce any
new symmetry into the graph, and it is trivial to
sum up the result of all such insertions, since we
have an independent geometric series for each in-
ternal prototype line. Thus we obtain the following
Computational Rule: To evaluate the sum of all
n-loop graphs for n greater than one, compute the
sum of all n-loop prototype graphs, but make the
following substitution for every internal propaga-
tor:
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that for internal photon lines, the substitution is

. gp u
—

krak u/k . gg u —krak&, /k'
Z 2k'+ i~ k -ey, +jr (A5)

In both cases we see that the infrared divergences
in the individual graphs become, in the sum, a
singUlarity at the origin of classical-field space.

Until now, we have only discussed graphs for
which all external lines carry zero momentum,
but we may sometimes wish to compute graphs for
which some of the external momenta are nonzero
[for example, to compute Z(cp, )]. The computa-
tional rule here is the same as before, except that
the class of prototype graphs will include some
graphs with type-two vertices, those for which
one or both of the external momenta attached to
the type-two vertices are nonzero. The reason
for this is simple: In counting combinations to
produce a geometric series, the nonzero momen-
tum serves to distinguish these type-two vertices
from the ruck of the others.

2. The Disappearance of Logarithms
of Coupling Constants

(Ae)

If we express the propagator in terms of the new
variable, we find that

1
k ——Ap

(A7)

In addition, for every integration momentum, we
have

de =g2d4y' . (AS)

Please note that this rescaling of momenta does
not affect our renormalization procedure, since
our prescription is to subtract graphs at fixed cp, .
Had we followed the more usual renormalization
procedure, and subtracted at some fixed Euclidean
momentum, the rescaling would change our re-
normalization conditions, and would not be legiti-
mate.

We can now add up all the powers of the coupling
constant associated with a given prototype graph.
In addition to the powers explicitly displayed in the
preceding two equations, there is, of course, an

In Sec. III we showed that, after renormaliza-
tion, the sum of all the one-loop graphs for the
effective potential was proportional to ~'. We shall
now extend this result to many-loop graphs in self-
interacting meson theory.

We shall use the analysis in terms of prototype
graphs, explained above. In every prototype
graph let us define a new momentum variable for
each loop,

u =X'~20'

p ~l/2p p (A10)

Then, reasoning as before, we find a result of the
form

y, 'g(P' /M, rp, /M ) +'= y, g(p/A, M, y, '/M')A

(A11)

where g is a function which depends on the proto-
type graph under consideration. Here the loga-
rithms of the coupling constant have not disap-
peared, but are associated with the logarithmic
dependence of the function on p'.

This has the interesting consequence that if we
compute Z by differentiating the above function
with respect to p' at the origin, we find that the
L-loop contribution is proportional to A~. This is
a natural arrangement of powers from the view-
point of the renormalization group; it implies that
in the L-loop approximation, both terms in the
formula for P, Eq. (5.14), are proportional to A.~".

It is much more difficult to perform a similar
analysis for massless scalar electrodynamics, be-
cause there is no rescaling of momenta that will
simultaneously eliminate the coupling constants
from the denominators of both the meson propaga-
tor, Eq. (A4), and the photon propagator, Eq.
(A5). Indeed, at this time, we do not know whether
the n-loop contributions to the effective potential
are simple polynomials in e and A. , or whether
they contain logarithms of the coupling constants.

Nevertheless, using an ingenious trick suggested
by Politzer, "we can investigate the dependence
on e of the L-loop contribution to the effective po-
tential, after we have determined A. as a function
of e by shifting the renormalization point to the
minimum of V. Politzer's suggestion is to para-

explicit factor of A. for every vertex. Thus, the
contribution to the effective potential is of the form

g. 'f(y. /M)(&)"" '=q. 'f(q, /M)(&)"',

(A9)

where M is the renormalization mass and f is a
function depending on the graph under considera-
tion.

The situation is somewhat different if we con-
sider graphs in which some external lines carry
nonzero momenta. For example, let us consider
summing a set of L-loop graphs for which one ex-
ternal line carries a momentum p, another carries
a momentum -p, and all others carry momentum
zero. That is to say, let us consider computing
the corrections to the two-point function in a fixed
classical field. In this case, to preserve momen-
tum conservation, we must also rescale the exter-
nal momentum,
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metrize the expansion not in terms of A. , as we
have been doing, but in terms of another parame-
ter, A. „defined by

6 ~V
3iV 8+

(A12)

This is certainly as good (or as bad) a definition
of the renormalized coupling constant as our old
one; both parameters equal the bare values of A.

in zero-loop approximation, which is all that is
needed to define an iterative renormalization pro-
cedure. In any event, X (or A, ) exists only to be
eliminated in favor of e at the end of the computa-
tion; which parameter we use in the intermediate
stages should not be important. The advantage of

is that it is easy to write in closed form the
equation that eliminates it, for, if we shift the re-
normalization point to a minimum of V, Eq. (A12)
becomes

z, =0. (A13)

APPENDIX B. MASSIVE SCALAR MESONS

In the body of this paper we restricted ourselves,
except for brief digressions, to theories in which
the spinless fields were massless, that is to say,
in which the renormalization conditions forced
V"(0) to vanish. In this appendix we discuss the
extension of our techniques to theories in which
the scalar mesons have masses, either real or
imaginary, that is to say, in which the renormal-
ization conditions force V"(0) to be some fixed
nonzero quantity, either positive or negative.

1. Self-Interacting Mesons with Positive Mass

Thus, all graphs that involve the quartic-meson
self-coupling disappear, and it is easy to construct
a rescaling argument to determine the e depen-
dence of the loop expansion. We shall not give the
details here, but merely state that the results are
the same as those in the previous case, except
that A, is replaced by e'. Thus, the L-loop contri-
bution to the effective potential is proportional to
(e') ", etc.

where, as before, B and C are renormalization
counterterms, and the integral is over Euclidean
momentum space. Since in this region (k'+ p, ')
never vanishes, we can drop the i&. We determine
B and C just as in Sec. III, by imposing the re-
normalization conditions

and

d V

d9c q =o
C

d Vt
4dy,

(B2)

The expression for V we obtain in this way is
somewhat cumbersome. For simplicity, we will
give it explicity only in the regime of interest for
the study of the zero-mass limit, p, «M:

A.V=-,' 'y, '+—,p, '+, (p'+-'Py, ')'ln 1+

+ 2~0 Pc S~ gc
2 2 3 2 4

2+, (p'+-,'xy, ')' In 1+
7T

2
I 2 2 ~ 2 4 1 2 4 ~P+2~v y, —24~ y. +4~ y. ln

phd

(B4)

As the mass goes to zero, this clearly goes
smoothly into the corresponding expression for
the massless theory, Eq. (3.10).

Of course, since the massive theory is free of
infrared divergences, we could choose M to be
zero. This is obviously a stupid thing to do if one
is studying the zero-mass limit; we could hardly
expect a smooth limit as p, goes to zero if we
abruptly change the definition of X at the last mo-
ment. Nevertheless, for the reader who might be
interested in the massive theory for its own sake,
we give the form of V with this renormalization
convention:

We begin with the self-interacting meson theory
of Sec. III, except that we now assume that the me-
son has a positive mass, p, . The only effect of
this is to change the meson propagator from the
massless to the massive form. Thus, the one-
loop approximation to the effective potential, Eq.
(3.3), becomes

For the same hypothetical reader, we state, with-
out proof, that, in the many-meson case„ the rele-
vant formulas in Sec. VI, Eqs. (6.2) and (6.3), re-
main valid in the massive theory if Vo is inter-
preted as including quadratic mass terms as well
as quartic self- interactions.

2. Self-Interacting Mesons with Imaginary Mass

We now investigate the theory for which p.
' is

negative. In this case, (k'+ p, ') can vanish even
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for Euclidean k; thus we cannot drop the i e in Eq.
(Bl), and the effective potential has an imaginary
part. " This cannot be canceled by the I3 and C

counterterms; these must remain real, to pre-
serve the reality of the Lagrangian.

It is easy to compute this imaginary part:

lmV=- [(y'+ —,'Ay, ')'8(-p, ' ——,&y, ') P-] .
64m

(B6)

p'+~6A(y)' =0 . (B8}
This is a point at which the 8 function in Eq. (B6)
vanishes; thus all derivatives of V at this point
are real.

The second term in this equation is just an addi-
tive constant; it has no effect on the physics of the
system, and can be dropped with impunity. The
first term, though, cannot be swept under the rug;
it represents a genuine physical effect.

We can gain some heuristic understanding of this
effect if we return to the analogy between V and the
momentum-space propagator, discussed in Sec.
IO. In ordinary perturbation theory, the propaga-
tor has an imaginary part at those momenta for
which the off-mass-shell particle is kinematically
unstable. Here, the vacuum itself is kinematically
unstable, because of the negative mass term in
our initial Lagrangian; thus V develops an imagin-
ary part. We cannot claim credit for discovering
this phenomenon; it was first observed in the
classic calculation by Euler and Heisenberg" of
the effective Lagrangian for constant electromag-
netic fields in quantum electrodynamics. The
Euler-Heisenberg function is real for constant
magnetic fields, but imaginary for constant elec-
tric fields, because, in the presence of a constant
electric field, the vacuum can decay into electron-
positron pairs.

Just as in the usual theory of unstable particles,
the presence of an imaginary part forces us to
modify our mass renormalization condition. Since
we can only add real counterterms to the Lagran-
gian, we can only control the real part of V"(0};
thus, for negative p', Eq. (B2) must be replaced
by

d V
'

Re (Bv)
dpi( c (jc=O

The physical meaning of p,
' is now even more re-

mote than before, but it is still a finite quantity
which serves to parametrize the theory.

We should observe that the imaginary part of the
effective potential does not affect the reality of
zero-momentum Green's functions in the physical
(asymmetric) theory For, to.lowest order, the
vacuum expectation value of y is given by

3. Massive Scalar Electrodynamics

For scalar electrodynamics, "even if the meson
has a mass, the photon does not. Thus, diagrams
involving photon loops are still infrared divergent,
and we must use a nonzero renormalization mass,
M, to define the quartic coupling constant, A.. Fol-
lowing Sec. VI, we will assume that X is of the
order of magnitude of e', so we can neglect the ef-
fects of meson loops compared with those of pho-
ton loops. Then, no matter what the value of A,

and M, we can find a mass m such that

2 2V=~g fj{), +„.2y, ln
64K m

(B9)

Se M2
ln—+-

8m m2 3 (Blo)

If we wish to make contact with the conventional
description of the massive theory, then we should
choose M to be on the order of p., the only mass
in the theory. It would be perverse to do other-
wise; we can create spurious contradictions by
describing a physical situation in two different
formalisms in which we assign the same symbol
to two drastically different objects. (Of course,
when we are studying the zero-mass limit, we
must keep M fixed. Thus M becomes many times
larger than p- but here we are asking a different
question. )

Now, if V is to have a second minimum at all
(let alone one that is lower than the one at the
origin), then it is easy to show that

Note that m is not a renormalization mass but a
genuine parameter which, together with e and p. ,
characterizes the theory; it replaces the redundant
pair of variables, X and M. From Eq. (B9), it is
trivial to verify the smooth approach to the zero-
mass limit, Eq. (4.9).

Nevertheless, there is still a surprise lurking
in this formula: For sufficiently small positive
p', V evidently has two local minima, one at the
origin and one near m, and its value at the second
minimum is evidently lower than its value at the
first. Thus, even for positive p.', spontaneous
symmetry breaking occurs.

This seems to contradict the conventional wis-
dom stated in Sec. I." Is ordinary real-mass sca-
lar electrodynamics unstable' No, it is not, as
we shall now explain.

The point is that the conventional wisdom states
that the theory does not suffer spontaneous sym-
metry breaking if p' is positive and A. is positive.
As we have said many times, the value of A. de-
pends on our choice of M; in the case at hand, we
differentiate Eq. (B9) four times and find
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For small e (in particular, for e as small as the
physical electron charge), this implies that A. is
negative if M is on the order of p, .

Thus, properly interpreted, the theory in which
we have found a second minimum is not conven-
tional massive scalar electrodynamics at all, but
a theory with negative quartic coupling constant.
At first glance, we would expect such a theory to
have no stable vacuum at all, because, as we move
away from the origin, V decreases without bound.
However, it is not too surprising to be told that,

at least for small x (on the order of e'), the effects
of radiative corrections dominate those of the
quartic self-coupling, and turn V upwards again.

We have argued that this is the natural way to
interpret the two minima in Eq. (88). Even if the
reader does not believe this, we think he must
admit that it is no less natural than the alternative
interpretation (that radiative corrections cause
normal massive scalar electrodynamics to suffer
spontaneous symmetry breaking), and therefore
should be preferred, if only because, when given
two otherwise equivalent descriptions of the same
physical phenomenon, we should choose the one
that does least violence to our intuition.

*Work supported in part by the National Science Foun-
dation under Grant No. 30819X.

~We refer here to such familiar problems as infinite
cross sections, etc. In fact, it will turn out that these
well-known difficulties are somewhat off the point, since
they are evidence against the existence of an 8 matrix
but not against the existence of a theory of off-mass-
shell Green's functions. We shall show that even the
latter type of theory does not exist.

We use a metric with signature (+—-).
3We will return to (and verify in our formalism) this

common belief in Appendix B.
4For the sophisticated reader, we emphasize that p2

is not the bare mass; it is the renormalized mass about
the symmetric vacuum. If p2 is positive, this is indeed
the renormalized mass of the meson. If p2 is negative,
it possesses no such simple interpretation, but it is
still a completely well-defined renormalized quantity
which can be used to parametrize the theory. For the
unsophisticated reader, we emphasize that these re-
marks will be explained in greater detaQ later.
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An extremely simple method is presented to calculate unambiguously higher-order correc-
tions in the unitary (U) gauge of theories with spontaneously broken gauge symmetries.
Manipulating Feynman integrals in coordinate space, the spurious nonrenormalizable in-
finities of this gauge are isolated in the form of (contracted) Feynman graphs. Without
making reference to any specific global regularization scheme, the complete cancellation
of these graphs is demonstrated in the cases of fermion-fermion scattering to fourth
order in the Abelian model considered by Appelquist and Quinn and for the similar neutrino
scattering in Weinberg's SU(2)z x Y model. The reason for such complete cancellation is
seen to be a consequence of the algebraic structure of the equal-time commutators among
currents, their divergences, and various fields. This structure, of course, is dictated by
the original gauge symmetry. As a check on our methods, the weak muon anomaly in Wein-
berg's model is calculated, and agreement is found with the (gauge-invariant) results of
other authors.

I. INTRODUCTION

One of the most interesting recent developments
of field theory is the discovery of models of
"quasirenormalizable" type. Weinberg' presented
the first such realistic model, in which he proposed
to unify the weak and electromagnetic interactions
of leptons through the spontaneous breakdown of
symmetry in a gauge-invariant Lagrangian via the
Higgs phenomenon. By now a large number of
models of this type have been proposed which also
include hadronic interactions. '

A common feature of all these theories is the
fact that, to a given order of perturbation theory,
individual Feynman diagrams contributing to a
specific process contain nonrenormalizable diver-
gences. We shall call these infinities "spurious"
because they happen to cancel when all individual
diagrams are added. Cancellations of this type
have been shown to occur in the Weinberg theory"
and in a simplified Abelian model' by means of a
simple cutoff prescription to regulate the integrals
involved.

It is well known for renormalizable theories of
the usual type that different arbitrary regulariza-
tions yield different finite additions to the divergent
parts of Feynman graphs. ' This is not serious
because the infinite together with such (ambiguous)
finite parts are absorbed into mass and charge re-
normalization anyhow. In quasirenormalizable
theories some of the infinities —the spurious ones—
cancel against infinities in other graphs. Here
finite, regularization-dependent terms can be left
over. Such an ambiguity has already been en-
countered in the early calculations of the anoma-
lous magnetic moment of the muon in Weinberg's
theory. '

We have been referring so far to the "U-gauge"
formulation of the theory only. In this gauge the
fields are redefined so as to eliminate superfluous
scalar bosons. Just because of the spurious-di-
vergence problem mentioned above, the proof of
renormalizability for these theories has not been
given in the U gauge. In a series of fundamental
papers 't Hooft' and Lee and Zinn-Justin9 have
given the proof in the so-called "R gauge, " where


