

Warum Physik?

Physik 1 für Chemiker und Biologen 1. Vorlesung – 02.11.2020

https://xkcd.com/435/

Heute:

- Übersicht über die Veranstaltung
- Wofür Physik?
- Physik in Chemie und Biologie
- Größenordnungen, Zeit und Längenskalen

Prof. Dr. Ralf Jungmann

Jungmann@physik.lmu.de

Prof. Dr. Jan Lipfert

Jan.Lipfert@lmu.de

Zoom Webinar Features

Wir nutzten die "Webinar" Funktion der Platform Zoom. ZOOM

- Sie sollten unsere Folien und Videos der Dozenten sehen.
- Die anderen Teilnehmer ("Attendees") sind stumm geschaltet (weil es sonst Probleme mit Hintergrundgeräuschen gibt) und die Videos ausgeschaltet (da wir aufzeichnen).
- Fragen können Sie jederzeit in die "Q & A" Funktion einstellen.
- Wir werden regelmäßig während der Vorlesungen die Umfrage ("Poll") Funktion benutzten. Dazu gleich ein Beispiel...

Termine & Ablauf der Veranstaltung

Durch die COVID-19 Pandemie müssen wir die Veranstaltung weitgehend online anbieten. <u>Dies ist für uns alle eine große Herausforderung!</u>
Die Online-Lehre bietet aber auch Chancen und Vorteile (Aufzeichnung!).

Vorlesung

- "Live" Besprechungen über Zoom Montags 9:15 bis ca. 11:00 Administratives; Verständnisfragen; Beispielaufgaben; Zeit für Fragen und Diskussionen!
- 2) "Asynchrone" **Online Vorlesungen** jede Woche im Netz! Aufgezeichnete Vorlesungen, die den Stoff erklären. Bitte zur Vorbereitung der Stunde am Montag schauen!

Übungen (ebenfalls über Zoom)

Montags 15:00-17:00 (Studierende der Chemie) Montags / Dienstags (Studierende der Biologie)

Klausuren (vorläufig)

08.03.2021 13:00-15:00 Abschlussklausur / 1. Klausur 08.04.2021 13:00-15:00 Wiederholungsklausur / 2. Klausur

Team

Besprechung / Vorlesung

Prof. Ralf Jungmann <u>Jungmann@biochem.mpg.de</u>

Prof. Jan Lipfert <u>Jan.Lipfert@lmu.de</u>

Versuche

Gunnar Spieß <u>Gunnar.Spiess@physik.uni-muenchen.de</u>

Übungen

Ines Amersdorffer Ines.Amersdorffer@physik.uni-muenchen.de

Bendix Hagedorn <u>bendix@usm.lmu.de</u>

Yuhao Liu Yuhao.Liu@physik.uni-muenchen.de

Lisa Regler <u>lisa.m.regler@gmail.com</u>

Michael Reichert <u>m.reichert@physik.uni-muenchen.de</u>

Navid Roshani <u>navidroshani@gmx.de</u>

Jonas Tittel jonas.tittel@outlook.com

Jonas Zimmermann Jonas.Zimmermann@campus.lmu.de

Materialien zur Veranstaltung

Webseite der Vorlesung:

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise 20 21/pn1/index.html

Moodle-Seite zur Vorlesung: (Password: pn1ws2021)

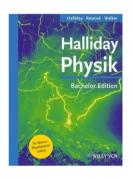
https://moodle.lmu.de/course/view.php?id=12657

Folien zur Vorlesung

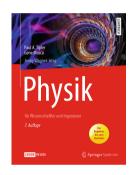
Es gibt immer eine "vorher" Version (zum Ausdrucken und selber ausfüllen) und eine "komplette" Version (mit meinen handschriftlichen Notizen)

Aufzeichnung der Vorlesung

- Wir werden jede Woche eine Vorlesung online stellen
- Die Zoom Besprechungen zeichnen wir ebenfalls auf und stellen sie im Anschluss in den LMU cast


https://en.wikipedia.org/wiki/ File:SennMicrophone.jpg

Übungsblätter, Ankündigungen


- Das erste Übungsblatt (Wiederholung Mathematik) für die Übungen nächste Woche – steht bereits im Netz.
- Alle anderen Übungsblätter werden jeweils am Montag online gestellt und sind für Übungen in der darauffolgende Woche.

Literatur

- Online Vorlesungen
- Vorlesungsfolien & ergänzendes Vorlesungsmaterial
- Bücher:

Halliday: Physik (Bachelor Edition) D. Halliday, R. Resnick, J. Walker Wiley-VCH, Berlin ISBN: 9783527407460

Physik
Paul A. Tipler
Spektrum Akademischer Verlag
ISBN: 978-3-642-54165-0

Weiterführende / ergänzende Literatur:

Gerthsen Physik

D. Meschede Springer

ISBN: 3642128939

Klausur

Chemiker und Biologen schreiben die gleiche Klausur, am gleichen Tag, mit dem gleichen Bewertungsschlüssel!

Es ist aktuell noch unklar, ob es eine Präsenzklausur (mit klarem Hygienekonzept) oder eine Online-Klausur geben wird.

Wenn es eine Präsenzklausur gibt:

- 2-stündige schriftliche Prüfung
- Weiteres zu den Inhalten während des Semesters!

Bei der Klausur sind erlaubt:

- 1 <u>handbeschriebenes</u> DIN-A4 Blatt, Vorder- und Rückseite (also insgesamt 2 Seiten). Beim Schreiben des Blattes lernt man sehr viel!
- Ein normaler Taschenrechner (kein Laptop, kein Smartphone)
- Keine Formelsammlung, keine Lehrbücher
- Wörterbücher sind erlaubt

Übungseinteilung

- Alle Übungen finden online über Zoom statt.
- Die Einteilung erfolgt durch Dr. Thomas Engel (Chemie) und Dr. Michael Bögle (Biologie).
- Chemie: 4 Übungsgruppen, Montags 15:00-17:00 (als Blockübung mit AC und Mathe 1)
- Biologie: 12 Übungsgruppen, Montags und Dienstags
- Sie bekommen Email mit einem Zoom Link von den jeweiligen Tutoren.
 Die Zoom links stehen auch auf der Moodle Seite.

Übungsmodus: Vorrechnen

 Die Übungsblätter werden nicht eingesammelt oder korrigiert; stattdessen werden die Aufgaben vorgerechnet. PN1 - Physik 1 für Chemiker und Biologen Prof. R. Jungmann und Prof. J. Lipfert

WS 2020/21 Übungsblatt 1

Übungsblatt 1 - Wiederholung Mathematik Besprechung in der Woche vom 9.11.2020

- Es wird 12 Übungsblätter mit 3-5 Übungsaufgaben geben, also etwa 40-50 Aufgaben. **Somit hat jeder die Chance vorzurechnen.**
- Bonussystem für Vorrechnen: Die Studenten rechnen vor.
 Zum Online-Vorrechnen können Sie ein Tablett benutzten oder Ihre handschriftliche Rechnung abfotografieren.
- Die Tutoren vergeben Punkte (max. 5 pro Aufgabe). Die Punkte der zwei besten vorgerechneten Aufgaben gehen in die Übungs-Bonuswertung (d.h. maximal 10 Punkte).
- Studenten, die noch nicht vorgerechnet haben, werden bevorzugt, damit jeder die Chance auf zweimal Vorrechnen bekommt.

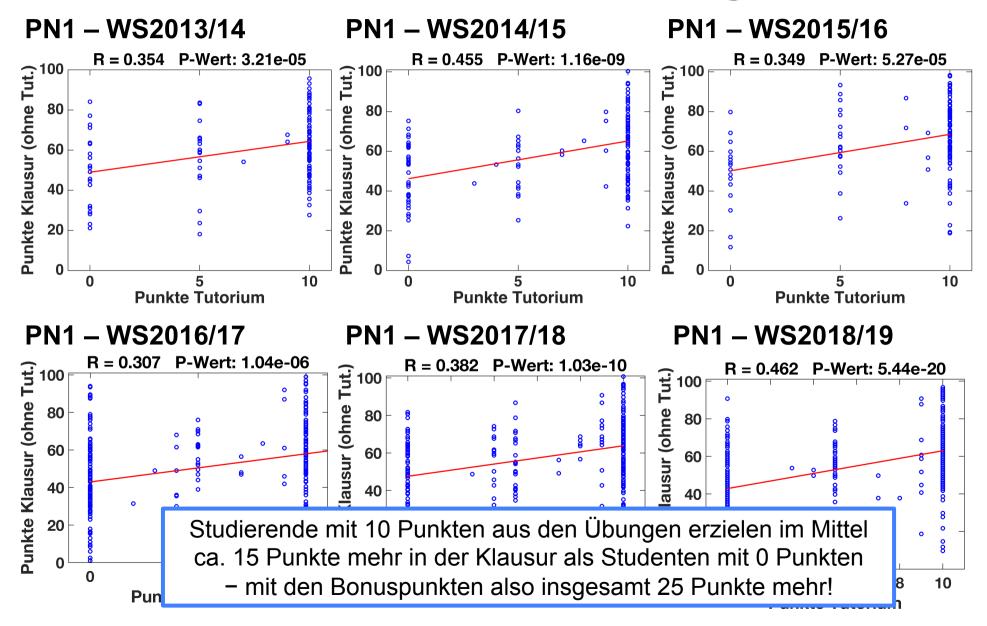
Übungsmodus: Bonuspunkte

- Für jede vorgerechnete Aufgabe gibt es maximal 5 Punkte.
- Insgesamt können maximal 10 Punkte Bonuspunkte aus den Übungen erlangt werden.
- Die Bonuspunkte werden zum Ergebnis der Klausur(en) addiert (für die Klausur alleine gibt es maximal 100 Punkte).
- Die Bonuspunkte z\u00e4hlen sowohl f\u00fcr die Abschluss- als auch die Wiederholungsklausur in diesem Semester (sind aber nicht aus vergangenen oder in zuk\u00fcnnftige Semester "\u00fcbertragbar").
- Man kann auch ohne Punkte aus der Übung an der Klausur teilnehmen, die Klausur bestehen, und sogar eine 1,0 erreichen.
- Mit 10 Bonuspunkten kann man sich ca. um eine halbe Notenstufe verbessern.

Verhältnis von online Vorlesungen, Zoom-Besprechungen und Übungen

- Die online Vorlesungen führen in die Themen des Semesters ein.
 Zu jeder Vorlesung stellen wir die Vorlesungsfolien und Verständnisfragen zur Verfügung, mit denen sie sich den Stoff erarbeiten können. Zur Ergänzung geben wir Buchkapitel zum vertiefenden Studium an.
- In den Zoom Besprechung diskutieren wir der Stoff, stellen Verständnisfragen, rechnen Bespielaufgaben und haben Gelegenheit, Fragen zu besprechen. Wir wiederholen <u>nicht</u> die komplette Vorlesung!
- Die **Übungen** bauen auf den Stoff der Vorlesung auf, gehen aber auch darüber hinaus. Die Beschäftigung mit den Übungsaufgaben hilft enorm beim Verstehen des Stoffes und bietet eine gute Kontrolle des eigenen Verständnisses. Die Übungen bieten eine gute Vorbereitung auf die Klausur (sind aber kein reines "Klausur-Rechen-Training").

Mathematik/"Rechnen" ist unerlässlich in den Naturwissenschaften!


Warum sollte ich die Übungen und Vorlesungen besuchen?

- Keine Anwesenheitspflicht!
- Die Vorlesungen führen den Stoff ein, helfen Wichtiges von Unwichtigem zu unterscheiden, Zusammenhänge zu sehen.
- Besprechungen veranschaulichen den Stoff und bilden Gedächtnisstützen für spätere Wiederholung.
- Sowohl Besprechung als auch Übung bieten ein Forum für Diskussionen,
 Ansprechpartner, Gleichgesinnte mit "Physik-Problemen" und Fragen.

Die Vorlesungen und Übungen sind ein Angebot an Sie!

Es liegt an <u>Ihnen</u>, was Sie aus dieser Veranstaltung (und aus Ihrem Studium an der LMU) machen!

Aktive Teilnahme an den Übungen korreliert mit Klausurerfolg!

Lehrinhalte PN1

1) Methodik der Physik ("Wie denken Physiker")

5) Wärmelehre, Thermodynamik (kurz, am Ende)

6) Spezielle Relativitätstheorie (kurz, am Ende)

Isaac Newton

https://de.wikipedia.org/wiki/ Kugelsto%C3%9Fpendel

https://de.wikipedia.org/wiki/ Albert_Einstein

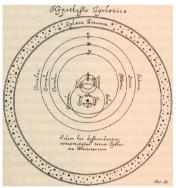
https://en.wikipedia.org/wiki/File: 2006-01-14 Surface waves.jpg

Zeitplan der Vorlesung (vorläufig)

02.11.	Übersicht; Wofür Physik?			
09.11.	Einheiten, Messen, Messfehler			
16.11.	Bewegungen in 1, 2 und 3D; Kräfte, Masse, Trägheit;			
23.11.	Kreisbewegung, Zentripetalkraft; Reibung			
30.11.	Gravitation; Arbeit, Energie, Leistung			
07.12.	Impuls, Stöße			
14.12.	Drehbewegungen, Drehimpuls			
21.12.	Flüssigkeiten, Druck; Fluide und Strömungen, Kapillarkraft			
11.01.	Schwingungen (harmonische, gedämpfte, getriebene)			
18.01.	Wellen (Ausbreitung, Superposition)			
25.01.	Thermodynamik: 0. Hauptsatz, Temperaturskalen			
01.02.	1. und 2. Hauptsatz, ideales Gas, pV Diagramme, Transport			
08.02.	Ausblick: Moderne Physik und Spezielle Relativitätstheorie			

Wofür brauchen Chemiker*innen und Biolog*innen überhaupt Physik?

(...insbesondere Mechanik?)


Aufklärung, Himmelsmechanik und die "wissenschaftliche Methode"

"Wissenschaftliche Revolution":

Ab dem 16. Jahrhundert etablieren sich (allmählich) die modernen Naturwissenschaften, ausgehend von der Himmelsmechanik: Kopernikus, Galileo, Brahe, Kepler, Newton, etc.

https://de.wikipedia.org/wiki/Fernrohr

http://www.wikiwand.com/de/ Tychonisches_Weltmodell

- Mathematische, quantitative Theorien werden mit genauen Messungen verglichen.
- Theorien können bestätigt oder widerlegt werden (mit z.T. revolutionären Folgen!) und richten sich nicht nach "Autoritäten"

https://de.wikisource.org/wiki/ Nicolaus_Copernicus

Nikolaus Kopernikus

(1473-1543)

https://de.wikipedia.org/wiki/ Isaac_Newton Isaac Newton (1642-1727)

"Makroskopische Mechanik" in Labor und Industrie

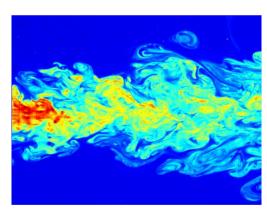
Destillation

https://de.wikipedia.org/wiki/Erd%C3%B6lraffinerie

Raffinerieverfahren

https://de.wikipedia.org/wiki/Erd%C3%B6lf%C3%B6rderung in Deutschland

https://de.wikipedia.org/wiki/Deutsche Tamoil

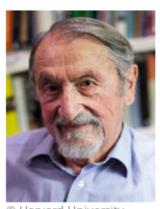

https://de.wikipedia.org/wiki/Zentrifuge

Zentrifugen

http://www.berzsenyi.hu/dibusz/comenius/opal.html

Sedimentierung

https://en.wikipedia.org/wiki/ File:False_color_image_of_the_far_field_of_a_submerged_turbulent_jet.jpg


Strömungsmechanik

"Mikroskopische Mechanik" von (biologischen) (Makro-)molekülen

Chemienobelpreis 2013

The Nobel Prize in Chemistry 2013

© Harvard University Martin Karplus

Michael Levitt

Photo: Wikimedia Commons

Arieh Warshel

The Nobel Prize in Chemistry 2013 was awarded jointly to Martin Karplus, Michael Levitt and Arieh Warshel "for the development of multiscale models for complex chemical systems".

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/

Hydrophobic effect is roughly proportional to surface area Continuum solvent model torsion angle torsion angle Distance Distance

"Molecular Mechanics":

- Atome werden als
 Punktmassen genähert
- Chemische Bindungen werden als elastische
 Federn beschrieben
- (Numerische) Lösung der Newtonschen
 Bewegungsgleichungen

Beispiel für eine <u>lange</u> Molekulardynamik Simulation: NTL9 Protein (~1.5 ms Faltung)

Film der simulierten Faltung des Proteins NTL9:

https://www.youtube.com/watch?v=gFcp2Xpd29I

- Berechne viele kurze Trajektorien mittels "distributed computing" (Folding@home)
- Extrapoliere Information mit einem Markov state Modell

Voelz, Pande, et al., JACS (2010)

02.11.20 Prof. Dr. Jan Lipfert 20

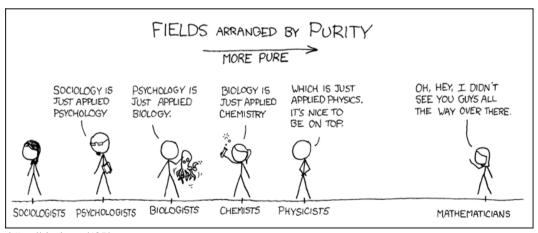
Beispiel für Molekulardynamik Simulationen im Kampf gegen SARS-CoV-2

Molekulardynamik Simulationen des SARS-CoV-2 Spike Proteins (and anderer Proteine des neuen Corona-Viruses):

https://www.deshawresearch.com/downloads/download trajectory sarscov2.cgi/

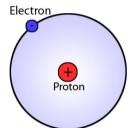
Trimerisches SARS-CoV-2 Spike Glykoprotein (10 µs) Simulationen von Medikamenten, die das trimerisches Spike Glykoprotein binden

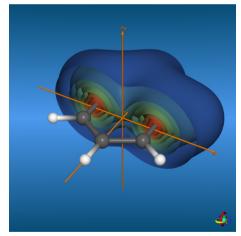
Mechanik als Grundlage der Quantenmechanik


"The underlying physical laws necessary for the mathematical theory of a large part of physics and the whole of chemistry are thus completely known, and the difficulty is only that the exact application of these laws leads to equations much too complicated to be soluble."

https://de.wikipedia.org/wiki/Paul Dirac

P.A.M. Dirac, 1929


Paul Dirac (1902-1984; Nobelpreis 1933) war einer der Väter der Quantenmechanik


https://xkcd.com/435/

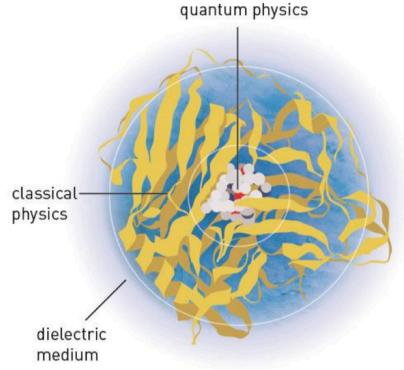
Was meint Paul Dirac damit?

Wasserstoffatom (und andere einfache Atome und Moleküle): Eigenschaften berechenbar durch Lösen der **Schrödingergleichung**

https://de.wikibooks.org/wiki/ Atommodelle: Bohrsches Atommodell

http://csi.chemie.tu-darmstadt.de/ak/immel/tutorials/orbitals/molecular/benzene_density-cont.jpg

https://de.wikipedia.org/wiki/Trinkglas


https://de.wiktionary.org/wiki/Wassermolek%C3%BCI
Wassermolekül:

sehr gute Näherungen möglich (Quantenchemie!)

ABER: In der Chemie (sicher in der Biologie!) hat man es oft mit sehr vielen (10²⁴!) Teilchen zu tun. Direkte Simulation ist dann schwierig / unmöglich.

 $i\hbar \frac{\partial \Psi(\vec{r},t)}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \Psi(\vec{r},t) + V(\vec{r},t) \Psi(\vec{r},t)$

Gemischte Simulationen: Quanten + Klassische Physik

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013/advanced.html

QM/MM Modelle ("quantum mechanics/molecular mechanics"):

Simuliere z.B. das aktive Zentrum eines Enzyms quantenmechanisch, den Rest des Protein atomar genau, aber klassisch und die Umgebung des Proteins mit einem Kontinuummodel

Gemischte Simulationen: Quanten + Klassische Physik

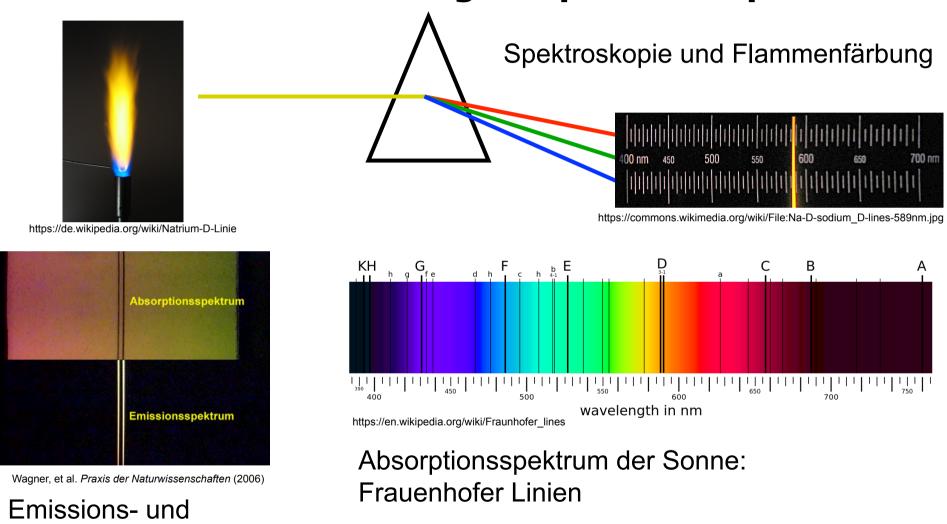
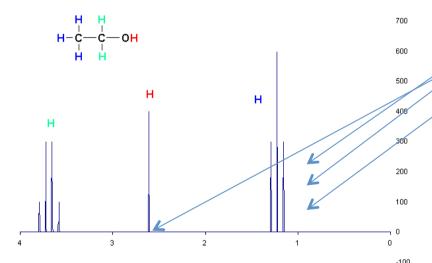


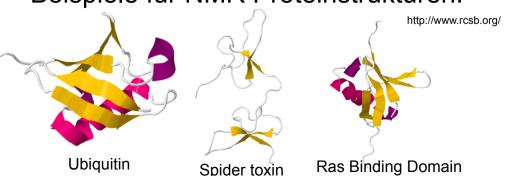
Figure 2. Newton and Schrödinger's cat. Previously, classical physics and quantum chemistry belonged to rivalling worlds. The Nobel Laureates in Chemistry 2013 have opened a gate between those worlds and have brought about a flourishing collaboration.

http://www.nobelprize.org/nobel_prizes/chemistry/laureates/2013

Physikalische Messmethoden in der Chemie und Biologie: Spektroskopie


Absorptionsspektren

Physikalische Messmethoden in der Chemie und (Struktur-)Biologie: NMR (Kernspinresonanz)


Wichtige Technik zur Bestimmung von chemischen Strukturen:

Nuclear Magnetic Resonance (NMR)

https://en.wikipedia.org/wiki/Nuclear_magnetic_resonance_spectroscopy

Beispiele für NMR Proteinstrukturen:

https://de.wikipedia.org/wiki/Hufeisenmagnet https://en.wikipedia.org/wiki/Blood_alcohol_content

https://de.wikipedia.org/wiki/Kernspinresonanzspektroskopie

Fluoreszenz-Mikroskopie: Kombination aus Chemie (Farbstoffe) und Physik (Optik) um biologische Fragen zu beantworten!

Chemienobelpreis 2014

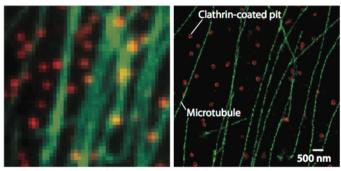
The Nobel Prize in Chemistry 2014

Photo: Matt Staley/HHMI Eric Betzig Prize share: 1/3

Planck-Institut

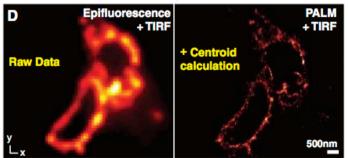
Stefan W. Hell

Prize share: 1/3


Photo: K. Lowder via Wikimedia Commons, CC-BY-SA-3.0

William E. Moerner Prize share: 1/3

The Nobel Prize in Chemistry 2014 was awarded jointly to Eric Betzig, Stefan W. Hell and William E. Moerner "for the development of superresolved fluorescence microscopy".


http://www.nobelprize.org/nobel prizes/chemistry/laureates/2014/

Microtubuli mit "normaler" (links) und "super-resolution" (rechts) Bildgebung

Bates, et al. Science (2007)

Beispiel für "super-resolution" Bild (rechts) einer Zelle:

Betzig et al. Science (2006)

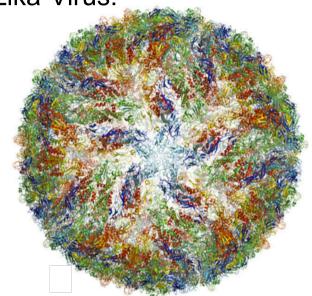
Cryo-Elektronenmikroskopie zur Aufklärung der Struktur von biologischen Makromolekülen

Chemienobelpreis 2017

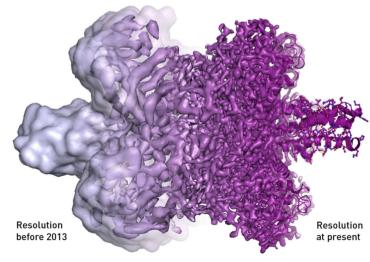
The Nobel Prize in Chemistry 2017

© Nobel Media. III. N. Elmehed
Jacques Dubochet
Prize share: 1/3

© Nobel Media. III. N. Elmehed Joachim Frank Prize share: 1/3



Elmehed
Richard Henderson
Prize share: 1/3


The Nobel Prize in Chemistry 2017 was awarded to Jacques Dubochet, Joachim Frank and Richard Henderson "for developing cryo-electron microscopy for the high-resolution structure determination of biomolecules in solution".

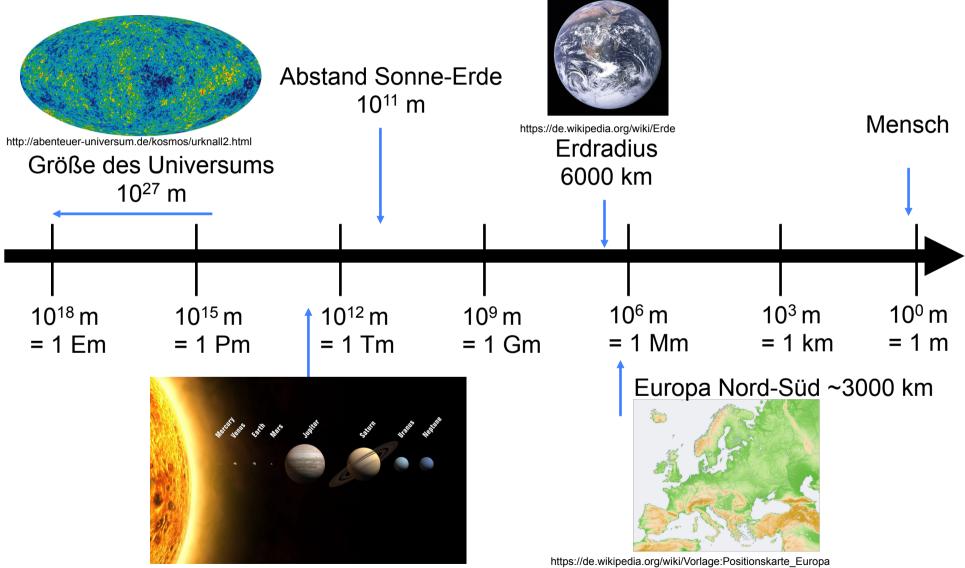
https://www.nobelprize.org/nobel_prizes/chemistry/laureates/2017/

z.B. Zika-Virus:

"Resolution Revolution":

02.11.20

Prof. Dr. Jan Lipfert

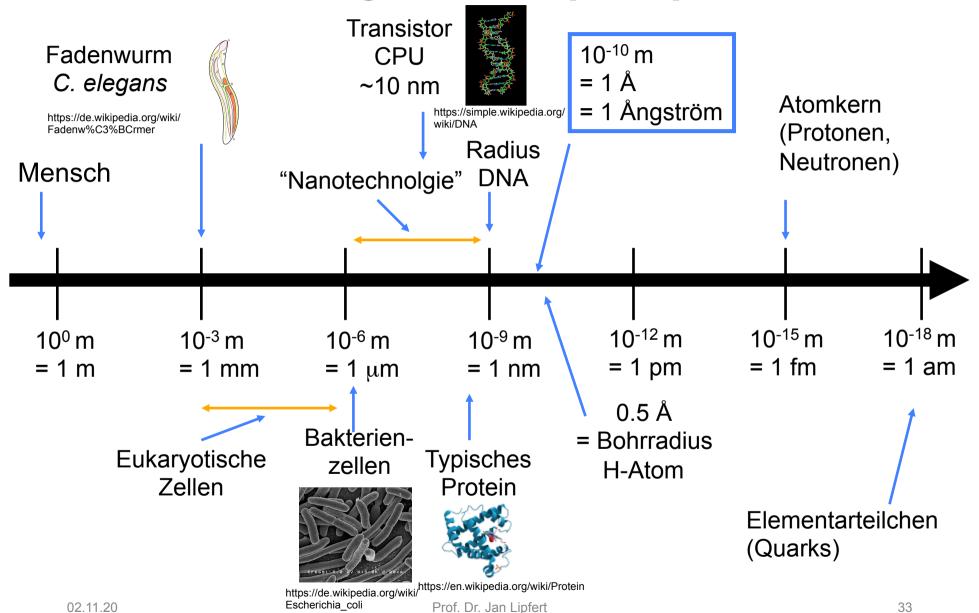

Physikalische Notation: Schreibweise in Zehnerpotenz

$$10^{4} = 10$$
 $10^{2} = 10.10 = 100$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$
 $10^{6} = 1000$

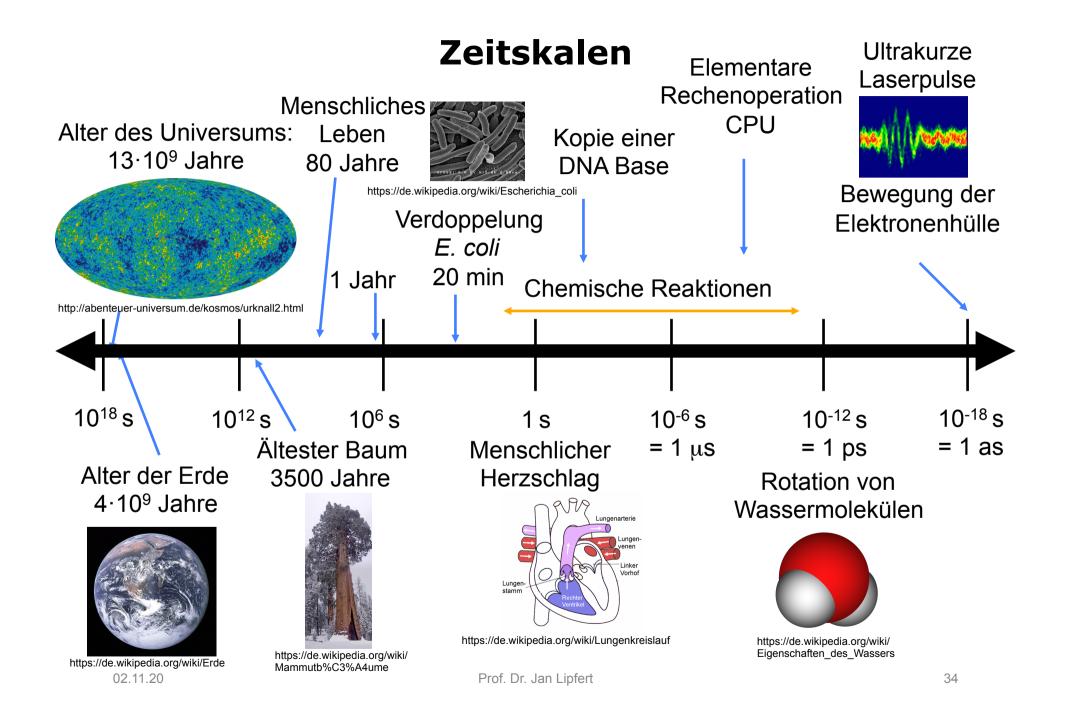
Vorsätze für Maßeinheiten

Symbol	Name	Ursprung	Wert		
Y	Yotta	ital. otto = acht	10 ²⁴	1.000.000.000.000.000.000.000	Quadrillion
Z	Zetta	ital. sette = sieben	10 ²¹	1.000.000.000.000.000.000	Trilliarde
E	Exa	gr. ἑξάκις <i>hexákis</i> = sechsmal ^[3]	10 ¹⁸	1.000.000.000.000.000	Trillion
P	Peta	gr. <i>petanynnein</i> = alles umfassen / gr. πεντάκις <i>pentákis</i> = fünfmal	10 ¹⁵	1.000.000.000.000	Billiarde
т	Tera	gr. τέρας <i>téras</i> = Ungeheuer / gr. τετράκις <i>tetrákis</i> = viermal	10 ¹²	1.000.000.000	Billion
G	Giga	gr. γίγας gígas = <i>Riese</i>	10 ⁹	1.000.000.000	Milliarde
M	Mega	gr. μέγα <i>méga</i> = groß	10 ⁶	1.000.000	Million
k	Kilo	gr. χίλιοι <i>chílioi</i> = tausend	10 ³	1.000	Tausend
h	Hekto	gr. ἑκατόν <i>hekatón</i> = hundert	10 ²	100	Hundert
da	Deka	gr. δέκα <i>déka</i> = zehn	10 ¹	10	Zehn
_	_	_	10 ⁰	1	Eins
d	Dezi	lat. decimus = zehnter	10 ⁻¹	0,1	Zehntel
C	Zenti	lat. centesimus = hundertster	10 ⁻²	0,01	Hundertstel
m	Milli	lat. millesimus = tausendster	10 ⁻³	0,001	Tausendstel
μ	Mikro	gr. μικρός <i>mikrós</i> = klein	10 ⁻⁶	0,000.001	Millionstel
n	Nano	gr. νάνος <i>nános</i> und ital. <i>nano</i> = Zwerg	10 ⁻⁹	0,000.000.001	Milliardstel
р	Piko	ital. piccolo = klein	10 ⁻¹²	0,000.000.001	Billionstel
f	Femto	skand. femton/femten = fünfzehn	10 ⁻¹⁵	0,000.000.000.001	Billiardstel
а	Atto	skand. arton/atten = achtzehn	10 ⁻¹⁸	0,000.000.000.000.000	Trillionstel
Z	Zepto	lat. septem = sieben	10 ⁻²¹	0,000.000.000.000.000.001	Trilliardstel
у	Yokto	lat. octo = acht	10-24	0,000.000.000.000.000.000.000.001	Quadrillionstel

Längenskalen (groß)



https://en.wikipedia.org/wiki/File:Planets2013.jpg


Prof. Dr. Jan Lipfert

02.11.20

Längenskalen (klein)

02.11.20

