FAKUltÄT FÜR Physik im WiSe 2020/21
Strongly correlated quantum systems
Dozent: Dr. Fabian Grusdt

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_20_21/CorrQuantumSys/

Problem Set 5:

Handout: Thu, Jan. 14, 2021; Solutions: Fri, Jan. 22, 2021

Problem 1 Flux insertion (for the proof of Luttinger's theorem) - counts as two [a-d / e-g]
In this problem we consider non-interacting spin-less particles on a ring (or a torus) and couple them to a $U(1)$ gauge flux through the ring (or through one cycle of the torus).
(1.a) We start by considering a one-dimensional lattice on a ring of length L. The simplest way to introduce a total $U(1)$ gauge flux Φ is by the Hamiltonian:

$$
\begin{equation*}
\hat{\mathcal{H}}(\Phi)=-t \sum_{j=1}^{L-1}\left(\hat{c}_{j+1}^{\dagger} \hat{c}_{j}+\text { h.c. }\right)-t\left(e^{i \Phi} \hat{c}_{1}^{\dagger} \hat{c}_{L}+e^{-i \Phi} \hat{c}_{L}^{\dagger} \hat{c}_{1}\right) . \tag{1}
\end{equation*}
$$

For which values of Φ is this Hamiltonian translationally invariant? How are eigenstates at $\Phi=$ and $\Phi=2 \pi$ related to one another?
(1.b) Find a unitary gauge transformation

$$
\begin{equation*}
\hat{U}=\exp \left[-i \sum_{j=1}^{L} \varphi_{j} \hat{n}_{j}\right] \tag{2}
\end{equation*}
$$

such that

$$
\begin{equation*}
\tilde{\mathcal{H}}(\Phi)=\hat{U}^{\dagger} \hat{\mathcal{H}}(\Phi) \hat{U} \tag{3}
\end{equation*}
$$

is translationally invariant (make an appropriate choice of φ_{j} and calculate $\tilde{\mathcal{H}}(\Phi)$ explicitly!). How are eigenstates at $\Phi=0$ and $\Phi=2 \pi$ related?
(1.c) Using Fourier transformations, derive all eigenenergies $E_{n}(\Phi)$ of $\tilde{\mathcal{H}}(\Phi)$ for general values of Φ. Show that the corresponding eigenstates are plane waves with momentum

$$
\begin{equation*}
k_{n}=\frac{2 \pi}{L} n, \quad n=1 \ldots L, \tag{4}
\end{equation*}
$$

and show that eigenenergies are related as:

$$
\begin{equation*}
E_{n}(\Phi+2 \pi)=E_{n+1}(\Phi) . \tag{5}
\end{equation*}
$$

(1.d) Now consider an initial eigenstate $\left|\Psi_{0}(\Phi)\right\rangle$ of $\tilde{\mathcal{H}}(\Phi)$ for $\Phi=0$ with N particles with momenta $k_{n_{m}}$, where $m=1 \ldots N$ labels the particles and $n_{m} \in\{1,2, \ldots, L\}$. Express the total momentum P_{x} of this state in terms of the momenta $k_{n_{m}}$.
(1.e) Next, assume that Φ is adiabatically increased from $\Phi=0$ to $\Phi=2 \pi$, such that the quantum numbers $k_{n_{m}}$ cannot change. Accordingly, P_{x} cannot change. Show that the new eigenstate $\left|\Psi_{1}\right\rangle=\left|\Psi_{0}(\Phi=2 \pi)\right\rangle$ of $\hat{\mathcal{H}}(\Phi=2 \pi)$ is related to $\left|\Psi_{0}(\Phi=0)\right\rangle$ by a gauge transformation \hat{V} :

$$
\begin{equation*}
\left|\Psi_{1}\right\rangle=\hat{V}^{\dagger}\left|\Psi_{0}(\Phi=0)\right\rangle, \quad \hat{V}=\exp \left[-i \sum_{j=1}^{L} \vartheta_{j} \hat{n}_{j}\right] \tag{6}
\end{equation*}
$$

for appropriately chosen values of ϑ_{j}. Hint: Show that $\tilde{\mathcal{H}}(\Phi=2 \pi)$ and $\tilde{\mathcal{H}}(\Phi=0)$ are related by the gauge transformation \hat{V}.
(1.f) Show that $\left|\Psi_{1}\right\rangle$ is also an eigenstate of $\tilde{\mathcal{H}}(\Phi=0)$ but with momentum:

$$
\begin{equation*}
P_{x}^{\prime}=P_{x}+\frac{2 \pi}{L} N \bmod 2 \pi . \tag{7}
\end{equation*}
$$

Hint: Use the relation from (1.d).
(1.g) Generalize your results from above for a higher-dimensional system on a $L_{x} \times L_{y}$ torus and show that

$$
\begin{equation*}
P_{x}^{\prime}=P_{x}+\frac{2 \pi}{L_{x}} N \bmod 2 \pi \tag{8}
\end{equation*}
$$

when flux Φ_{x} is adiabatically introduced through the x-cycle of the torus. Here N still denotes the total particle number in the higher-dimensional system.

Problem 2 Small and large Fermi surfaces in the Hubbard model
(2.a) When a translational symmetry is spontaneously broken, Luttinger's theorem can be applied for the resulting reduced Brillouin zone. Show for the case of a Néel state, i.e. for a square lattice with a broken sub-lattice symmetry, that Luttinger's theorem in the reduced magnetic Brillouin zone (MBZ) becomes:

$$
\begin{equation*}
\frac{V_{\mathrm{FS}}^{\mathrm{MBZ}}}{2 \pi^{2}}=\mathbb{Z}-p \tag{9}
\end{equation*}
$$

where p denotes the hole doping, i.e.

$$
\begin{equation*}
N=L_{x} L_{y}(1-p) \tag{10}
\end{equation*}
$$

Consider a spin-balanced system where $N_{\uparrow}=N_{\downarrow}=N / 2$.
(2.b) Perform a particle-hole mapping, $\hat{c}_{\boldsymbol{j}, \sigma} \rightarrow \hat{h}_{\boldsymbol{j}, \sigma}^{\dagger}$, and show Luttinger's theorem formulated for the hole-fermi surface becomes:

$$
\begin{equation*}
\frac{V_{\mathrm{FS}}^{h}}{2 \pi^{2}} \equiv \frac{N_{h}}{L_{x} L_{y}} \bmod 2 \tag{11}
\end{equation*}
$$

Here N_{h} denotes the number of (spin-full) holes and $V_{\mathrm{FS}}^{h}=(2 \pi)^{2}-V_{\mathrm{FS}}$.
(2.c) Combine your results from (a) and (b) to show that:

$$
\begin{equation*}
\frac{V_{\mathrm{FS}}^{h}}{2 \pi^{2}} \equiv 1+p \bmod 2 \quad \text { large } \mathrm{FS} \tag{12}
\end{equation*}
$$

for translationally invariant systems, and

$$
\begin{equation*}
\frac{V_{\mathrm{FS}}^{h}}{2 \pi^{2}} \equiv p \bmod 1 \quad \text { small FS } \tag{13}
\end{equation*}
$$

for a broken translational symmetry in the case of a Néel state.

