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Problem 1 Flux insertion (for the proof of Luttinger’s theorem) – counts as two [a-d / e-g]

In this problem we consider non-interacting spin-less particles on a ring (or a torus) and couple
them to a U(1) gauge flux through the ring (or through one cycle of the torus).

(1.a) We start by considering a one-dimensional lattice on a ring of length L. The simplest way to
introduce a total U(1) gauge flux Φ is by the Hamiltonian:

Ĥ(Φ) = −t
L−1∑
j=1

(
ĉ†j+1ĉj + h.c.

)
− t
(
eiΦĉ†1ĉL + e−iΦĉ†Lĉ1

)
. (1)

For which values of Φ is this Hamiltonian translationally invariant? How are eigenstates at
Φ = and Φ = 2π related to one another?

(1.b) Find a unitary gauge transformation

Û = exp

[
−i

L∑
j=1

ϕjn̂j

]
(2)

such that
H̃(Φ) = Û †Ĥ(Φ)Û (3)

is translationally invariant (make an appropriate choice of ϕj and calculate H̃(Φ) explicitly!).

How are eigenstates at Φ = 0 and Φ = 2π related?

(1.c) Using Fourier transformations, derive all eigenenergies En(Φ) of H̃(Φ) for general values of
Φ. Show that the corresponding eigenstates are plane waves with momentum

kn =
2π

L
n, n = 1...L, (4)

and show that eigenenergies are related as:

En(Φ + 2π) = En+1(Φ). (5)

(1.d) Now consider an initial eigenstate |Ψ0(Φ)〉 of H̃(Φ) for Φ = 0 with N particles with
momenta knm , where m = 1...N labels the particles and nm ∈ {1, 2, ..., L}. Express the
total momentum Px of this state in terms of the momenta knm .
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(1.e) Next, assume that Φ is adiabatically increased from Φ = 0 to Φ = 2π, such that the quantum
numbers knm cannot change. Accordingly, Px cannot change. Show that the new eigenstate
|Ψ1〉 = |Ψ0(Φ = 2π)〉 of H̃(Φ = 2π) is related to |Ψ0(Φ = 0)〉 by a gauge transformation V̂ :

|Ψ1〉 = V̂ †|Ψ0(Φ = 0)〉, V̂ = exp

[
−i

L∑
j=1

ϑjn̂j

]
(6)

for appropriately chosen values of ϑj . Hint: Show that H̃(Φ = 2π) and H̃(Φ = 0) are related

by the gauge transformation V̂ .

(1.f) Show that |Ψ1〉 is also an eigenstate of H̃(Φ = 0) but with momentum:

P ′x = Px +
2π

L
N mod 2π. (7)

Hint: Use the relation from (1.d).

(1.g) Generalize your results from above for a higher-dimensional system on a Lx × Ly torus and
show that

P ′x = Px +
2π

Lx
N mod 2π (8)

when flux Φx is adiabatically introduced through the x-cycle of the torus. Here N still denotes
the total particle number in the higher-dimensional system.

Problem 2 Small and large Fermi surfaces in the Hubbard model

(2.a) When a translational symmetry is spontaneously broken, Luttinger’s theorem can be applied
for the resulting reduced Brillouin zone. Show for the case of a Néel state, i.e. for a square
lattice with a broken sub-lattice symmetry, that Luttinger’s theorem in the reduced magnetic
Brillouin zone (MBZ) becomes:

V MBZ
FS

2π2
= Z− p (9)

where p denotes the hole doping, i.e.

N = LxLy(1− p). (10)

Consider a spin-balanced system where N↑ = N↓ = N/2.

(2.b) Perform a particle-hole mapping, ĉj,σ → ĥ†j,σ, and show Luttinger’s theorem formulated for
the hole-fermi surface becomes:

V h
FS

2π2
≡ Nh

LxLy
mod 2. (11)

Here Nh denotes the number of (spin-full) holes and V h
FS = (2π)2 − VFS.

(2.c) Combine your results from (a) and (b) to show that:

V h
FS

2π2
≡ 1 + p mod 2 large FS (12)

for translationally invariant systems, and

V h
FS

2π2
≡ p mod 1 small FS (13)

for a broken translational symmetry in the case of a Néel state.
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