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Problem 1 Flux insertion (for the proof of Luttinger's theorem) — counts as two [a-d / e-g]

In this problem we consider non-interacting spin-less particles on a ring (or a torus) and couple
them to a U(1) gauge flux through the ring (or through one cycle of the torus).

(1.a)

We start by considering a one-dimensional lattice on a ring of length L. The simplest way to
introduce a total U(1) gauge flux ® is by the Hamiltonian:

L1
H@) =1y (é}Héj v h.c.) —t (e"%}éL n e—i%}al) . (1)

j=1
For which values of ® is this Hamiltonian translationally invariant? How are eigenstates at

® = and ® = 27 related to one another?

Find a unitary gauge transformation

L
U = exp [—ZZ %’ﬁj] (2)
j=1
such that . o )
H(D) = UMH(®)U (3)
is translationally invariant (make an appropriate choice of ¢; and calculate 7-l(<I>) explicitly!).

How are eigenstates at ® = 0 and ® = 27 related?

Using Fourier transformations, derive all eigenenergies E, (®) of H(®) for general values of
®. Show that the corresponding eigenstates are plane waves with momentum

k, = —n, n=1..L, (4)
and show that eigenenergies are related as:

Ep(® +27) = By (D). (5)
Now consider an initial eigenstate |Wo(®)) of H(®) for ® = 0 with N particles with

momenta k, , where m = 1...N labels the particles and n,, € {1,2,...,L}. Express the
total momentum P, of this state in terms of the momenta &, .
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(1.e)

(1.g)

Next, assume that @ is adiabatically increased from ® = 0 to ® = 27, such that the quantum
numbers k,,, cannot change. Accordingly, P, cannot change. Show that the new eigenstate
|U) = |To(P = 27)) of H(P = 27) is related to |To(P = 0)) by a gauge transformation V:

1) = V6@ =0), V= exp [—izﬂjﬁj] (6

for appropriately chosen values of 19,. Hint: Show that H(® = 27) and H(® = 0) are related
by the gauge transformation V.

Show that |T;) is also an eigenstate of 7(® = 0) but with momentum:
2
P =P, + %N mod 27. (7)
Hint: Use the relation from (1.d).

Generalize your results from above for a higher-dimensional system on a L, x L, torus and
show that 5
P =P+ L—WN mod 27 (8)

when flux @, is adiabatically introduced through the x-cycle of the torus. Here N still denotes
the total particle number in the higher-dimensional system.

Problem 2 Small and large Fermi surfaces in the Hubbard model

(2.a)

(2.c)

When a translational symmetry is spontaneously broken, Luttinger's theorem can be applied
for the resulting reduced Brillouin zone. Show for the case of a Néel state, i.e. for a square
lattice with a broken sub-lattice symmetry, that Luttinger's theorem in the reduced magnetic
Brillouin zone (MBZ) becomes:

Vg

272

=Z—p (9)
where p denotes the hole doping, i.e.

N =L,L,(1—p). (10)
Consider a spin-balanced system where Ny = N| = N/2.

Perform a particle-hole mapping, ¢; , — iAz;U and show Luttinger's theorem formulated for
the hole-fermi surface becomes:
Vi Ny
—=2 = d 2. 11
om2  LoL, (11)

Here Nj, denotes the number of (spin-full) holes and Vi = (27)? — Vis.

Combine your results from (a) and (b) to show that:

h
o 2 =1+p mod2 large FS (12)
for translationally invariant systems, and
Vi
QFS =p mod1  small FS (13)
2

for a broken translational symmetry in the case of a Néel state.
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