

Problem Set 4:

Handout: Thu, Dec. 17, 2020; Solutions: Fri, Jan. 8, 2020

Problem 1 Collapse and revival of a BEC
We consider the collapse and revival experiments in an optical lattice [Greiner et al., Nature 419 (2002)]. They start from an initial weakly interacting superfluid state, which can be modeled by a product of coherent states:

$$
\begin{equation*}
|\Psi(t=0)\rangle=\prod_{\boldsymbol{j}}|\alpha\rangle_{\boldsymbol{j}}, \quad|\alpha\rangle_{i}=e^{-|\alpha|^{2} / 2} \sum_{n=0}^{\infty} \frac{\alpha^{n}}{\sqrt{n!}}|n\rangle . \tag{1}
\end{equation*}
$$

At time $t=0$, the depth of the optical lattice is suddenly increased, leading to very strong on-site Hubbard interactions. At times $t>0$ we can model the Hamiltonian by just the interacting part

$$
\begin{equation*}
\hat{\mathcal{H}}_{U}=\frac{U}{2} \sum_{\boldsymbol{j}} \hat{n}_{\boldsymbol{j}}\left(\hat{n}_{\boldsymbol{j}}-1\right), \quad \text { with }: \quad \hat{n}_{\boldsymbol{j}}=\hat{\Psi}_{j}^{\dagger} \hat{\Psi}_{\boldsymbol{j}} . \tag{2}
\end{equation*}
$$

In the following you may assume that the density is small:

$$
\begin{equation*}
N / L^{d} \gg 1 \tag{3}
\end{equation*}
$$

(1.a) How is $\alpha \in \mathbb{C}$ related to the average particle number N / L^{d} in the lattice? What is the physical meaning of the complex phase of α ?
(1.b) After a time-evolution for a period T with $\hat{\mathcal{H}}_{U}$, the optical lattice is released and the system undergoes a time-of-flight (TOF) expansion. Show that the amplitude of interference peaks in the TOF images first collapses and later revives for special values $T_{n}=n T_{0}$ of T. Determine the revival time T_{0} ! Hint: You may already use the result from (1.c) that $\left\langle\hat{\Psi}_{j}\right\rangle \approx 0$.
(1.c) Show that half-way between the revivals the system realizes a so-called cat state, in which $\left\langle\hat{\Psi}_{j}\right\rangle \approx 0$ but $\left\langle\hat{\Psi}_{j}^{2}\right\rangle \neq 0$.

Problem 2 Generalized RPA calculation
Consider the Fermi-Hubbard model with nearest-neighbor tunneling t and on-site interactions U between the two spin states $\sigma=\uparrow, \downarrow$.
(2.a) Using the Hartree-Fock decoupling, derive the equations of motion for

$$
\begin{equation*}
\hat{\rho}_{p, q, \sigma}=\hat{c}_{p+q, \sigma}^{\dagger} \hat{c}_{p, \sigma} \tag{4}
\end{equation*}
$$

in the generalized RPA approximation (as defined in the lecture notes) - i.e. include direct and exchange terms and approximate

$$
\begin{equation*}
\left\langle\hat{c}_{p+q, \sigma}^{\dagger} \hat{c}_{p, \sigma^{\prime}}\right\rangle \approx \delta_{q, 0} \delta_{\sigma, \sigma^{\prime}} n_{p}^{\mathrm{F}}(T) \tag{5}
\end{equation*}
$$

(2.b) From the equations of motion in (2.a) [the result can also be found in the lecture notes] derive the generalized RPA (gRPA) response functions for charge and spin:

$$
\begin{equation*}
\chi_{\mathrm{gRPA}}^{\mathrm{c}}(q, \omega)=\frac{\chi_{0}(q, \omega)}{1-\chi_{0}(q, \omega) U / L^{d}}, \quad \chi_{\mathrm{gRPA}}^{\mathrm{s}}(q, \omega)=\frac{\chi_{0}(q, \omega)}{1+\chi_{0}(q, \omega) U / L^{d}} . \tag{6}
\end{equation*}
$$

Problem 3 Super-exchange in a tilted potential
Consider a two-site (pseudo) spin- $1 / 2$ Hubbard model in the presence of a strong tilt Δ :

$$
\begin{align*}
& \hat{\mathcal{H}}=-t \sum_{\sigma=\uparrow, \downarrow}\left(\hat{c}_{2, \sigma}^{\dagger} \hat{c}_{1, \sigma}+\text { h.c. }\right)+\frac{\Delta}{2} \sum_{\sigma=\uparrow, \downarrow}\left(\hat{c}_{1, \sigma}^{\dagger} \hat{c}_{1, \sigma}-\hat{c}_{2, \sigma}^{\dagger} \hat{c}_{2, \sigma}\right)+ \\
&+U \sum_{n=1}^{2} \hat{n}_{n, \uparrow} \hat{n}_{n, \downarrow}+\frac{U}{2} \sum_{n=1}^{2} \sum_{\sigma=\uparrow \downarrow} \hat{n}_{n, \sigma}\left(\hat{n}_{n, \sigma}-1\right) \tag{7}
\end{align*}
$$

Note that the last sum is identical zero for fermionic particles (Pauli principle). In this problem we will consider the regime:

$$
\begin{equation*}
U, \Delta, t>0, \quad U, \Delta \gg t, \quad|U \pm \Delta| \gg t \tag{8}
\end{equation*}
$$

and we work with exactly two particles with arbitrary spin.
(3.a) In the following we will treat t as a perturbation and work with unperturbed states with exactly one particle per site. Discuss for which values of U, Δ such states are ground states when $t=0$, or metastable excited states respectively.
(3.b) Now consider the particles $\hat{c}_{j, \sigma}$ are fermions. Show by an explicit perturbative calculation (degenerate perturbation theory) that the perturbed eigenstates for $t>0$ are described by the effective Hamiltonian

$$
\begin{equation*}
\hat{\mathcal{H}}_{\mathrm{eff}}=J \hat{\boldsymbol{S}}_{1} \cdot \hat{\boldsymbol{S}}_{2}-\frac{J}{4} \hat{n}_{1} \hat{n}_{2}, \tag{9}
\end{equation*}
$$

where $\hat{\boldsymbol{S}}_{n}$ and \hat{n}_{n} are the spin and particle number on site $n=1,2$. Show that the superexchange coupling is given by

$$
\begin{equation*}
J=\frac{2 t^{2}}{U+\Delta}+\frac{2 t^{2}}{U-\Delta} \tag{10}
\end{equation*}
$$

and discuss under which conditions it is (anti-) ferromagnetic.
(3.c) Next, assume that the particles $\hat{c}_{j, \sigma}$ are bosons. How do the results from (3.b) change?
(3.d) Finally, discuss how the situation changes if $\hat{c}_{j, \sigma}$ are bosons and the Hubbard interaction becomes spin-dependent, i.e.

$$
\begin{equation*}
\hat{\mathcal{H}}_{U}=U_{\uparrow \downarrow} \sum_{n=1}^{2} \hat{n}_{n, \uparrow} \hat{n}_{n, \downarrow}+\frac{1}{2} \sum_{n=1}^{2} \sum_{\sigma=\uparrow \downarrow} U_{\sigma} \hat{n}_{n, \sigma}\left(\hat{n}_{n, \sigma}-1\right) \tag{11}
\end{equation*}
$$

instead of the $\operatorname{SU}(2)$-invariant Hubbard interactions in Eq. (7). Hint: See e.g. Duan et al., Phys. Rev. Lett. 91, 090402 (2003).

