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Problem 1 Spontaneous symmetry breaking in the extended Bose-Hubbard model

In this problem, we will study the 1D extended Bose-Hubbard model in a periodic chain with
j = 1...L sites. We consider hard-core bosons (â†j)

2 = 0 described by the following Hamiltonian,

Ĥ = −t
∑
j

(
â†j+1âj + h.c.

)
+ V

∑
j

n̂j+1n̂j +W
∑
j

n̂j+2n̂j. (1)

(1.a) Describe the low-energy spectrum of Ĥ for t = W = 0 at half-filling, i.e. N = L/2 in a
chain of even length L ∈ 2Z>0. Determine all low-energy eigenstates for t = 0 whose energy
is E ≤ V .

(1.b) Consider the two degenerate ground states |Ψ1〉 and |Ψ2〉 found in (1.a). Treat t � V
perturbatively (still for W = 0) and discuss lowest-order non-trivial corrections to the ground
state energies. Argue why the resulting energy splitting of the perturbed ground states scales
as t× (t/V )L/2. I.e. the resulting energy gap is exponentially small in system size. In practice,
this will lead to spontaneous breaking of the discrete translational symmetry.

(1.c) Discuss how the situation from (1.a) and (1.b) changes if L is odd instead of even and
N = (L− 1)/2. Describe the low-energy eigenstates, and discuss how spontaneous symmetry
breaking is affected.

(1.d) Now consider a periodic chain whose length is a multiple of 3, i.e. L ∈ 3Z>0. For t = 0 and
N = 2/3×L show that purely repulsive interactions V,W > 0 lead to pairing in the ground
state.

Problem 2 Full counting statistics

The full counting statistics of a quantum mechanical observable Ô† = Ô for a density matrix ρ̂ is
described by the probability distribution pO to measure its eigenvalue O ∈ R:

pO =
∑
n

δ(O − on)〈on|ρ̂|on〉, (2)

where Ô =
∑

n on|on〉〈on|.

(2.a) Show that pO can be calculated as the Fourier transform of the generating functional

Z(φ) = (2π)−1/2tr
(
ρ̂ eiφÔ

)
, φ ∈ R. (3)

I.e., numerical calculation of Z(φ) is sufficient to obtain easy access (via Fourier transform)
to the full counting statistics of Ô.

1

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_20_21/CorrQuantumSys/


(2.b) Consider a Néel product state |Nz〉 =
∏

j |σ = (−1)j〉j. Calculate the full counting statistics
pMz of the staggered magnetization

M̂z =
∑
j

(−1)jŜzj . (4)

(2.c) Consider an ensemble of Néel product states pointing in a random direction, as described by
the density matrix

ρ̂ = Z−1
ˆ
d2Ω R̂Ω|Nz〉〈Nz|R̂†Ω (5)

Here Ω denotes a solid angle, R̂Ω rotates spins pointing along ±z into spins pointing along
±Ω (see also problem 1.b), and Z ensures normalization. Calculate the full counting statistics
pMz of the staggered magnetization! Hint: You don’t need to use the result from (2.a)!

(2.d) In (2.c) we considered a classical ensemble of unentangled product states. Discuss how you
expect the full counting statistics pMz to change when quantum fluctuations are included
and the product states in the ensemble are replaced by more realistic quantum states with
local entanglement. (This problem is about physical intuition rather than mathematical rigor,
and no calculation is expected.)

Problem 3 Gutzwiller description of the superfluid-to-Mott transition

To analyze the superfluid-to-Mott transition in the Bose-Hubbar model, consider the following type
of Gutzwiller variational states:

|ΨG[fn]〉 =
∏
j

(
m∑
n=0

fn√
n!

(â†j)
n

)
|0〉, (6)

with variational parameters f0, ..., fm satisfying (for normalization):

m∑
n=0

|fn|2 = 1. (7)

(3.a) Derive expressions for the variational kinetic and interaction energies 〈Ĥt〉 and 〈ĤU + Ĥµ〉.

(3.b) Discuss for which parameters fn the U(1) symmetry of the Bose-Hubbard model remains
unbroken in the Gutzwiller state. Write down explicit expressions for the n = 1, 2, 3, ... Mott
insulating states.

(3.c) Consider the case t = 0 without the kinetic (or tunneling) term. Derive the critical values

µ
(n)
c of the chemical potential where transitions between different Mott states take place. Of

which order is this phase transition?

(3.d) To analyze the stability of the Mott insulating states with n bosons per site, make the
following ansatz:

fn =
√

1− 2|α|2, fn−1 = α, fn+1 = α∗, fm6=n−1,n,n+1 = 0, (8)

for a small α ∈ C with |α| � 1. Calculate the variational energy Etot(α) to second order in
α, in the middle of the Mott plateau at µ = U(n− 1/2).

2



(3.e) Using the result from (3.d) for Etot(α), show for n� 1 that the superfluid-to-Mott transition
point is estimated to be at

U = 4nzt (9)

by this Gutzwiller description, and still working at µ = U(n− 1/2). Derive a better estimate
valid also for smaller n.

(3.f) Explain how one can conclude from the Gutzwiller theory that the superfluid breaks the U(1)
symmetry. Which order do you expect the phase transition found in (3.e) to have?
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