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Problem 1 Strongly correlated states of matter

(1.a) Consider the classical 1D Heisenberg ferromagnet (J < 0), with the classical energy

E = J
∑
j

Sj · Sj+1. (1)

Find all classical ground state configurations {Sj} which minimize the energy functional
E[{Sj}]. Determine the ground state energy E0.

Show that E is invariant under global SU(2) rotations. Are the ground states minimizing
E[{Sj}] symmetric?

(1.b) Consider the quantum 1D Heisenberg ferromagnet (J < 0), with the Hamiltonian

Ĥ = J
∑
j

Ŝj · Ŝj+1. (2)

Using the variational principle, show that the classical ground states |{σj}〉, obtained by

multiplying the positive-eigenvalue eigenstates of σ · Ŝj, are true ground (and thus eigen-)

states of Ĥ.

Are these ground states correlated? Are these ground states entangled?

Choose the classical ground state |FMz〉 with all spins pointing along z and define the
following set of all states with total magnetization Sztot = L/2− 1,

{Ŝ−j |FMz〉}j=1...L. (3)

Show that the Hamiltonian Ĥ is block-diagonal in Sztot =
∑

j Ŝ
z
j and diagonalize the block

with Sztot = L/2− 1. Show that the resulting one-magnon states have a dispersion relation

ωk = −2J (1− cos(kx)) ' −Jk2x +O(k4x). (4)

(1.c) Consider the classical 1D Heisenberg antiferromagnet (J > 0), with the classical energy

E = J
∑
j

Sj · Sj+1. (5)

Find all classical ground state configurations {Sj} which minimize the energy functional
E[{Sj}]. Determine the ground state energy E0.

Show that E is invariant under global SU(2) rotations. Are the ground states minimizing
E[{Sj}] symmetric?
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(1.d) Consider the two-site quantum Heisenberg antiferromagnet (J > 0), with the Hamiltonian

Ĥ = JŜ1 · Ŝ2. (6)

Calculate all eigenstates and eigenenergies. Show that the classical two-site antiferromagnet
| ↑1↓2〉 is not an eigenstate, and calculate its average energy.

Is the quantum mechanical ground state degenerate? How does the ground state transform
under global SU(2) transformations? As an example, calculate explicitly the action of a
unitary transformation rotating spins around the y-axis by an angle π/2.

Show that the ground state is entangled and correlated.

Problem 2 Matrix product states

An important class of variational states is defined by the so-called matrix product states (MPS),
which form the basis for the numerical DMRG method. In this exercise, we illustrate how MPS’s
can represent entangled quantum states. For a one-dimensional periodic chain, with lattice sites
j = 1...L, a general MPS can be written:

|MPS〉 =
∑
{σj}

cσ1,...,σL|σ1....σL〉, cσ1,...,σL =
L∏
k=1

D∑
mk=1

M (σ1)
mL,m1

M (σ2)
m1,m2

...M (σL)
mL−1,mL

. (7)

Here σj = 1...d label the local basis states |σj〉 at site j. In the second expression, the coefficients
cσ1,...,σL are expressed as a product of D×D matrices M (σj) which depend on the respective local
states σj. Written in matrix notation, we have:

cσ1,...,σL = tr
[
M (σ1)M (σ2)... M (σL)

]
. (8)

The integers d and D denote the local Hilbert space dimension and the bond dimension of the
MPS, respectively.

(2.a) Show that the entangled Bell state |Ψ−〉 = (|↑↓〉 − |↓↑〉) /
√

2 in a two-site chain L = 2 can
be represented by an MPS with the following matrices:

M (↑1) =

(
1 0
0 0

)
, M (↑2) =

(
0 0
1 0

)
, M (↓1) =

(
0 −1
0 0

)
, M (↓2) =

(
1 0
0 0

)
. (9)

How do the matrices have to be changed to obtain a normalized state?

(2.b) Show that a general product state

|Φ〉 =
∏
j

 d∑
σj=1

φσj |σj〉

 (10)

can be represented by a MPS with bond dimension D = 1. Give explicit expressions for the
corresponding matrices Mσj !

(2.c) Describe the physical state of L = 4 spin-1/2 represented by:

M (↑j) =

 0 1 0
0 0 0

1/
√

2 0 0

 , M (↓j) =

 0 0 1

−1/
√

2 0 0
0 0 0

 (11)
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Problem 3 Entanglement spectrum

The entanglement of a subsystem V can be characterized by the structure of its reduced density
matrix, ρ̂V = trV |Ψ〉〈Ψ|. The entanglement spectrum is defined by the eigenvalues λn of − log ρ̂V
– i.e. one writes

ρ̂V = e−ĥ, ĥ = Û † diag (λ1, ..., λd) Û . (12)

(3.a) Assume that |Ψ〉 is the ground state of a Hamiltonian Ĥ, which satisfies the following global
conservation law:

[Ĥ, Ô] = 0, Ô = ÔV + ÔV , Ô† = Ô, (13)

where ÔV is defined only on the subsystem V and ÔV on its complement V .

Show that the reduced density matrix ρ̂V commutes with ÔV :

[ρ̂V , ÔV ] = 0. (14)

Discuss how this implies that the entanglement spectrum can be calculated separately for
the different eigenvalues on of ÔV :

ρ̂V =
⊕
n

e−ĥn , ĥn = Û †n diag (λ1(n), ..., λdn(n)) Ûn. (15)

(3.b) Calculate the ŜzA-resolved entanglement spectrum h−1/2 and h+1/2 for a spin-singlet state
shared by Alice (A) and Bob (B).

(3.c) Now consider the following Hamiltonian on a L = 4-site chain:

Ĥ = JŜ1 · Ŝ4 + JŜ2 · Ŝ3 (16)

Show that Ŝztot is conserved and qualifies as an observable Ô in (3.a).

Find the ground state for J > 0 and calculate the Ŝz-resolved entanglement spectrum if the
system is cut in two in the middle (A : j = 1, 2 and B : j = 3, 4).
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