

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_20_21/CorrQuantumSys/

Problem Set 1:

Handout: Thu, Nov. 5, 2020; Solutions: Fri, Nov. 13, 2020

Problem 1 Correlations in a classical ferromagnet

(1.a) Consider a classical ferromagnetic chain in 1D, with all spins pointing along z:

$$|\mathrm{FM}_z\rangle = |...\uparrow_{-1}\uparrow_0\uparrow_1...\rangle = \prod_j |\uparrow\rangle_j.$$
 (1)

Calculate the following spin-spin two point correlation functions for distances d,

$$C^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle, \qquad C_{c}^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle_{c},$$
⁽²⁾

and the reduced density matrix of the central spin $\hat{\rho}_0 = \operatorname{tr}_{i\neq 0} (|\mathrm{FM}_z\rangle \langle \mathrm{FM}_z|).$

Is the pure state $|FM_z\rangle$ entangled? Is the pure state $|FM_z\rangle$ correlated?

(1.b) Consider a classical ensemble of ferromagnetic states $|FM_{\Omega}\rangle$ whose spins point in a random direction Ω on the unit sphere. These states can be obtained from $|FM_z\rangle$ by applying a global rotation \hat{R}_{Ω} of all spins, which maps spins pointing along z to spins pointing along Ω , i.e. $|\uparrow\rangle \rightarrow \hat{R}_{\Omega}|\uparrow\rangle$ with $\Omega \cdot \hat{S} \ \hat{R}_{\Omega}|\uparrow\rangle = +1/2$. The classical ensemble can be described by a density matrix

$$\hat{\rho} = Z^{-1} \int d^2 \mathbf{\Omega} \ \hat{R}_{\mathbf{\Omega}} |\mathrm{FM}_z\rangle \langle \mathrm{FM}_z | \hat{R}_{\mathbf{\Omega}}^{\dagger}$$
(3)

where Z serves as a normalization constant.

Calculate the following spin-spin two point correlation functions for distances d,

$$C^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle, \qquad C_{c}^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle_{c},$$
(4)

and the reduced density matrix of the central spin $\hat{\rho}_0 = \operatorname{tr}_{j \neq 0} \left(\hat{\rho} \right)$.

Is the mixed state $\hat{\rho}$ correlated?

(1.c) Consider a classical ensemble of spins at infinite temperature, described by the density matrix

$$\hat{\rho}_{\infty} = \prod_{j} \frac{1}{2} \Big(|\uparrow\rangle_{j} \langle\uparrow| + |\downarrow\rangle_{j} \langle\downarrow| \Big).$$
(5)

Calculate the following spin-spin two point correlation functions for distances d,

$$C^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle, \qquad C_{c}^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle_{c},$$
(6)

and the reduced density matrix of the central spin $\hat{\rho}_0 = \operatorname{tr}_{j \neq 0} (\hat{\rho}_{\infty})$. Is the mixed state $\hat{\rho}_{\infty}$ correlated?

Problem 2 Valence bond solid (VBS)

The ground state of the two-site antiferromagnetic (J > 0) Heisenberg spin Hamiltonian,

$$\hat{\mathcal{H}}_2 = J\hat{\boldsymbol{S}}_1 \cdot \hat{\boldsymbol{S}}_2,\tag{7}$$

is given by the spin-singlet, or Bell state

$$|\Psi^{-}\rangle = \frac{1}{\sqrt{2}} \left(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle\right). \tag{8}$$

(2.a) Consider a one-dimensional spin chain with an antiferromagnetic Heisenberg term on every second bond:

$$\hat{\mathcal{H}}_{\text{VBS}} = J \sum_{n} \hat{\boldsymbol{S}}_{2n-1} \cdot \hat{\boldsymbol{S}}_{2n}.$$
(9)

Find and describe the unique ground state $|\Psi_{VBS}\rangle$ of $\hat{\mathcal{H}}_{VBS}$. ($\hat{\mathcal{H}}_{VBS}$ is called the parent Hamiltonian of this VBS state.)

(2.b) Assume that the system is realized in the ground state $|\Psi_{VBS}\rangle$. Calculate the following spin-spin two point correlation functions for distances d,

$$C^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle, \qquad C_{c}^{z}(d) = \langle \hat{S}_{0}^{z} \hat{S}_{d}^{z} \rangle_{c},$$
(10)

and the reduced density matrix of the central spin $\hat{\rho}_0 = \operatorname{tr}_{j \neq 0} (|\Psi_{\text{VBS}}\rangle \langle \Psi_{\text{VBS}}|).$

Is the pure state $|\Psi_{\rm VBS}
angle$ entangled? Is the pure state $|\Psi_{\rm VBS}
angle$ correlated?

Problem 3 Entanglement area & volume laws

(3.a) Consider a two-dimensional valence bond solid $|VBS\rangle$, determined as the ground state of the parent Hamiltonian

$$\hat{\mathcal{H}}_{\text{VBS}}^{\text{2d}} = J \sum_{n} \sum_{j_y} \hat{\boldsymbol{S}}_{2n-1,j_y} \cdot \hat{\boldsymbol{S}}_{2n,j_y}.$$
(11)

Here \hat{S}_{j_x,j_y} denotes the spin operator on site (j_x, j_y) in a 2D square lattice.

Let A be a rectangular region of size $\ell \times \ell$ in the center of the system. Calculate the entanglement entropy S_A of the subsystem. Distinguish between different possible sizes and locations of the rectangular region A relative to the 2D lattice! How does S_A depend on the linear size ℓ of the subsystem in the different cases?

- (3.b) Generalize the situation from (2.a) to three dimensions, and a cubic subsystem of size ℓ × ℓ × ℓ. How does the entanglement entropy S_A depend on the linear size ℓ of the subsystem in this case?
- (3.c) Now consider a 2D parent Hamiltonian in which every spin \hat{S}_i is coupled to *exactly one* other spin \hat{S}_j by an antiferromagnetic Heisenberg coupling; denote by (i, j) a pair of coupled spins, such that the parent Hamiltonian becomes:

$$\hat{\mathcal{H}} = J \sum_{(i,j)} \hat{S}_i \cdot \hat{S}_j$$
(12)

(i) Assume that no couplings exist between spins at sites i, j further apart than a critical distance d_c . Otherwise, assume that the combinations of coupled spins is random. For this situation, how does the entanglement entropy S_A of a rectangular subsystem A of size $\ell \times \ell$ scale with the linear size ℓ , assuming that $\ell \gg d_c$?

(ii) Next, consider a completely random combination of couplings at arbitrary distances, i.e. $d_c = \infty$. How does the entanglement entropy S_A of a rectangular subsystem A scale with its linear size ℓ in this case?

(3.d) Consider a system of N distinguishable and non-interacting quantum particles in a box of length L. Assume that each particle is prepared in the quantum mechanical ground state $|\Phi_0\rangle$ of the box, i.e.:

$$|\Psi\rangle = \prod_{n=1}^{N} |\Phi_0\rangle_n.$$
(13)

Divide the system into two spatial parts A and B defined by its left and right halfs, respectively. Calculate the entanglement entropy S_A – how does it depend on the particle number N?