
Second Quantization Jan von Delft, 17.11.2020

Motivation: to simplify treatment of exchange symmetry in many-particle systems

Assumed background:

elementary quantum mechanics, Dirac bra-ket notation, Bose and Fermi statistics

Literature: numerous textbooks on many-body physics have an introductory chapter or an 

appendix on 2nd quantization. Examples (these notes follow Altland & Simons):
- A. Altland & B. Simons, Condensed Matter Field Theory, Cambridge University Press, 2nd Ed. (2010), 

Sec.2.1-2  

- A. L. Fetter & J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill (1971), Chapter 1.

- G. Rickayzen, Greens Functions and Condensed Matter Physics, Dover (2013), Appendix A

- S. M. Girvin & K. Yang, Modern Condensed Matter Physics, Cambridge University Press (2019), Appendix J. 
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fermions
for

on-site energy hopping between sites i and j interaction between sites i and 

Single-particle basis

Single-particle Hilbert space:

Example: harmonic oscillator:

Wavefunction:

all values of 

Consider a single-particle quantum system. 

single-particle Hamiltonian:

Eigenvalue equation:

It is often convenient (though not necessary) to choose the basis states to be eigenstates of a 

Having this example in mind, we will assume that the label takes the values 

In general,     can also be a continuous index. E.g. for free particles, 

All we need (later) is some ordering convention for its values.

Or,    can enumerate sites in a lattice, then it is a discrete index, 



Exchange symmetry: 2 particles

Consider a system of 2 identical particles, described by 

2-particle Hilbert space: 

:    'first' particle in state      

Physically meaningful states must be fully symmetric (bosons) or anti-symmetric (fermions):

bosons

fermions
forMeaningful state:

Wavefunction:

, 'second' particle in state 

:    'first' particle in state      , 'second' particle in state      

invariant up to a sign under  

Physical part of 2-particle Hilbert space contains only symmetrized/antisymmetrized states: 

'Exchange symmetry':

2-particle 'Fock space':

But particles are indistinguishable, states (3a), (3b) don't have independent physical meaning.

Exchange symmetry: N particles

N-particle Hamiltonian:

N-particle 

Hilbert space: 

N copies

Physical part of this space contains only fully symmetrized/antisymmetrized states of the form: 

Sum: over all permutations of N indices. E.g.

Sign: for bosons:

for fermions
to

if even/odd number of transpostions are

needed to convert  

N-particle Fock space: all values of 

these states are occupied, 

      all others empty

Normalization         : chosen such that 



N-particle wave functions

N-particle position eigenstate: 

     position operator in i-th 

single-particle Hilbert space eigenvalue

N-particle 

wavefunction:

For fermions, wavefunction

is a determinant:

two particles in same state

two particles at same position

'Pauli exclusion   

     principle'

'Slater determinant'

fermions

if

'Exchange symmetry':

Antisymmetry of determinant under 

exchange of rows or columns implies:

N-particle basis: occupation number representation

3 bosons

3 fermions

Due to exchange symmetry, we can fully specify a basis state 

by specifying how many particles, , populate each 

Examples: the states on the right are denoted as 

          representation representation

with

For 'bosons', 

For 'fermions', : each  

: each can contain arbitrarily many bosons.

can contain at most one fermion  ('Pauli principle').



Fock space, creation operators

N-particle Fock space:

It is often convenient to not impose the condition of fixed particle number N. Then consider

(many-particle) 

Fock space:

'Vacuum space': 'vacuum state'

   total particle 

 number not fixed

Define 'creation operators' connecting states which differ by 1 for specified occupation number:

For fermions, occupation numbers are defined modulo 2, i.e. 

so, 

'fermionic sign' depends on how many 'earlier' states are occupied:

All states can be obtained from 

vacuum state by repeated action of 

creates particle in state 

[this encodes Pauli principle (6.4)]

bosons

fermions

(Anti)-commutation relations

Claim: creation operators satisfy 

Def:
= commutator, for bosons

= anti-commutator, for fermions

Proof:

- Equal indices,  For bosons, (trivially true)

For fermions:

This holds for all states in , hence , and also 

- Unequal indices, 

Simplest example: action on vacuum state, 



General case: assume (without loss of generality) 

(5) holds for all basis kets , hence it is an operator identity: 

'boson creation operators commute, fermion creation operators anti-commute'

of 

(Anti)-commutation relations

Recall definition of creation operator:

Matrix 

elements:

Complex

conjugate:

rewrite

(3) holds for all basis bras , hence we conclude that of 

i.e. 'annihilates' or 'destroys' a particle in state 

Action in Fock space: 

Hermitian conjugate of (9.6):

vacuum 

 space



(Anti)-commutation relations

Consider equal indices: 

Bosons:

Fermions:

holds for all basis kets!

(4,5) hold for all basis kets!

Compact formulation of (3) & (6):

(Anti)-commutation relations

General case: assume (without loss of generality) 

if 

(analogous to p. 9):

holds for all basis kets!

Summary:

'boson operators commute, fermion creation anti-commute', except for 

Given complex structure of Fock space, these relations are remarkably simple!



Change of basis

The single-particle states used above

- orthogonality:

- completeness:

for discrete index for continuous index, e.g. 

Consider change of basis:

must form a basis of , satisfying

Correspondingly: 

We make identifcation: 

(anti)-commutation relations preserve their form: 

If , then If , 

then similarly, 

Representation of one-body operators

Def: 'occupation number operator': with 

operator eigenvalue

Diagonal 

one-body operator:

When acting in :

acts in i-th of N single-particle spaces: is the single particle

there found in the single-particle state ?

Many-body matrix elements: total number of particles found in single-particle state 

(5) holds for all basis kets 

operator identity: 

of 

Transformed to a general 

(non-diagonal) basis:

Simply count the number of particles in single-particle state and multiply by eigenvalue!



Examples of one-body operators

Total particle number: 

energy eigenbasisVarious single-particle bases: position basis momentum basis

Kinetic energy:

Lattice Hamiltonian:

on-site energy hopping between sites i and j

Zeeman field coupling

to electron spin:

Potential 

spin operator Pauli matrices

= density operator

Representation of two-body operators

Interaction potential  between particles at positions 

We seek many-body operator 

symmetric

such that

Ansatz: 

Interpretation: 'take out two particles at x and x', let them feel the interaction, and put them back in'.

Check (3): act with 

Note:

vacuum state is empty:

on N-particle position eigenstate: 

commute to the right:

density operator 'finds' the particles, yields 

each commutation operation yields an extra 



commute to the right until it sits between 

Now multiply by and integrate over x and x', as in (16.3):

Hence, Ansatz (16.3) does yield the result (16.2), as required.

A general two-body operator with matrix elements can be expressed as 

mnemonic:


