Motivation: to simplify treatment of exchange symmetry in many-particle systems

$$
\begin{aligned}
& H= \sum_{i} \varepsilon_{i} c_{i}^{t} c_{i}+\sum_{i j} t\left(c_{i}^{t} c_{j}+c_{j}^{t} c_{i}\right)+\sum_{i j} V_{i j} c_{i}^{t} c_{i} c_{j}^{t} c_{j} \\
& \text { onsite energy } \\
& {\left[c_{i}, c_{j}^{+}\right]_{\zeta} }=\delta_{i j}, \quad\left[c_{i}, c_{j}\right]_{\zeta}=0, \quad\left[c_{i}^{+}, c_{j}^{+}\right]_{\zeta}=0, \\
& {[A, B]_{\zeta} }=A B+\zeta B A, \quad S= \pm 1 \quad \text { for }\left\{\begin{array}{l}
\text { bosons } \\
\text { fermions }
\end{array}\right.
\end{aligned}
$$

interaction between sites i and

Assumed background:
elementary quantum mechanics, Dirac bra-ket notation, Bose and Fermi statistics
Literature: numerous textbooks on many-body physics have an introductory chapter or an appendix on Ind quantization. Examples (these notes follow Altland \& Simone):

- A. Altland \& B. Simons, Condensed Matter Field Theory, Cambridge University Press, Ind Ed. (2010),

Sec.2.1-2

- A. L. Fetter \& J. D. Walecka, Quantum Theory of Many-Particle Systems, McGraw-Hill (1971), Chapter 1.
- G. Rickayzen, Greens Functions and Condensed Matter Physics, Dover (2013), Appendix A
- S. M. Girvin \& K. Yang, Modern Condensed Matter Physics, Cambridge University Press (2019), Appendix J.

Single-particle basis

Consider a single-particle quantum system.
Single-particle Hilbert space:
$\mathcal{H}_{(1)}=\operatorname{spar}\{|\lambda\rangle \mid$ all values of $\lambda\}$
Wavefunction:
($x \in \mathbb{R}^{d}$)

$$
\begin{equation*}
\psi_{\lambda}(x)=\langle x \mid \lambda\rangle \tag{1}
\end{equation*}
$$

It is often convenient (though not necessary) to choose the basis states to be eigenstates of a single-particle Hamiltonian:

$$
\begin{align*}
& \hat{H}_{(1)}(\hat{r}, \hat{p}) \tag{3}\\
& \hat{H}_{(1)}|\lambda\rangle=\varepsilon_{\lambda}|\lambda\rangle
\end{align*}
$$

$$
\begin{aligned}
& \vdots \\
& \varepsilon_{2} \\
& \varepsilon_{1} \\
& \varepsilon_{0}
\end{aligned}
$$

Eigenvalue equation:

$$
\lambda \text { label takes the values } 0,1,2, \ldots
$$

Example: harmonic oscillator:

$$
\begin{align*}
\hat{H}_{(1)}(\hat{r}, \hat{p}) & =\frac{1}{2 m} \hat{p}^{2}+\frac{1}{2} m \omega^{2} \hat{x}^{2} \tag{5}\\
\varepsilon_{\lambda} & =(\lambda+1 / 2) \hbar \omega, \lambda \in \mathbb{N}_{0} \tag{6}
\end{align*}
$$

In general, λ can also be a continuous index. E.g. for free particles, $\hat{H}_{(1)}=\frac{1}{2 m} \hat{p}^{2}, \lambda \mapsto \vec{p}$ Or, λ can enumerate sites in a lattice, then it is a discrete index, $\lambda \leftrightarrow i \in \mathbb{Z}^{d}$
All we need (later) is some ordering convention for its values.

Exchange symmetry: 2 particles
Consider a system of 2 identical particles, described by

$$
\begin{equation*}
\hat{H}_{(2)}=\hat{H}\left(\hat{x}_{1}, \hat{p}_{1} ; \hat{x}_{2}, \hat{p}_{2}\right) \tag{1}
\end{equation*}
$$

2-particle Hilbert space: $\quad \mathscr{L}_{(2)}=\mathscr{H}_{(1) \otimes} \otimes \mathscr{H}_{(1)}=\operatorname{span}\left\{|\lambda\rangle \otimes\left|\lambda^{\prime}\right\rangle\right\}$
$|\lambda\rangle \otimes\left|\lambda^{\prime}\right\rangle$: 'first' particle in state λ, 'second' particle in state λ^{\prime}
$\left|\lambda^{\prime}\right\rangle \otimes|\lambda\rangle$: 'first' particle in state λ^{\prime}, 'second' particle in state λ
But particles are indistinguishable, states (3a), (3b) don't have independent physical meaning.
Physically meaningful states must be fully symmetric (bosons) or anti-symmetric (fermions):
Meaningful state: $|\psi\rangle=\frac{1}{\sqrt{2}}[\mid \lambda)_{(0)}\left|\lambda^{\prime}\right\rangle+\zeta\left|\lambda^{\prime}\right\rangle(\lambda|\lambda\rangle], \quad S= \pm 1$ for $\left\{\begin{array}{l}\text { boson } \\ \text { fern }\end{array}\right.$
Wavefunction: $\psi\left(x_{1}, x_{2}\right)=\left\langle x_{1}\right| \otimes\left\langle x_{2} \mid \psi\right\rangle=\frac{1}{\sqrt{2}}\left[\psi_{\lambda}\left(x_{1}\right) \psi_{\lambda^{\prime}}\left(x_{2}\right)+\zeta \psi_{\lambda^{\prime}}\left(x_{1}\right) \psi_{\lambda}\left(x_{2}\right)\right]$
'Exchange symmetry': $\quad \psi\left(x_{2}, x_{1}\right)=\zeta \psi\left(x_{1}, x_{2}\right) \quad$ invariant up to a sign under $x_{1} \leftrightarrow x_{2}$
Physical part of 2-particle Hilbert space contains only symmetrized/antisymmetrized states:
2-particle 'Fork space':

$$
\begin{equation*}
F_{(z)}=\operatorname{span}\left\{|\lambda\rangle\left(\lambda\left|\lambda^{\prime}\right\rangle+\zeta\left|\lambda^{\prime}\right\rangle \oplus|\lambda\rangle\right\}\right. \tag{7}
\end{equation*}
$$

Exchange symmetry: N particles
N-particle Hamiltonian: $\quad \hat{H}_{(N)}=\hat{H}\left(\hat{x}_{1}, \hat{P}_{1} ; \hat{x}_{2}, \hat{P}_{2} ; \ldots ; \hat{x}_{N}, \hat{P}_{N}\right)$

Physical part of this space contains only fully symmetrized/antisymmetrized states of the form:
these states are occupied, all others empty
Sum: over all permutations of N indices. E.g. $\quad p=\left(p_{1} p_{2} p_{3}\right) \in\{(123),(132),(213),(231),(312),(321)\}$ $\operatorname{sgn}(P):+$
$\begin{aligned} \text { Sign: for bosons: } S_{p} & =1 \\ \text { for fermions } \zeta_{p} & =\operatorname{sgn}(p)= \pm 1\left\{\begin{array}{l}\text { if even/odd number of transpostions are } \\ \text { needed to convert } \\ (12 \ldots N)\end{array}\right)\left(P_{1} P_{2} \ldots P_{N}\right)\end{aligned}$
Normalization $\mathcal{N}: \quad$ chosen such that $\left\langle\lambda_{1}, \ldots, \lambda_{N} \mid \lambda_{1}, \ldots, \lambda_{N}\right\rangle=1$
N-particle Fork space: $\quad \mathcal{F}(N)=\operatorname{span}\left\{\left|\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\rangle \mid\right.$ all values of $\left.\left\{\lambda_{j}\right\}\right\}$

N-particle position eigenstate: $\quad\left|x_{1}, x_{2}, \ldots, x_{N}\right\rangle=\left|x_{1}\right\rangle \otimes\left|x_{2}\right\rangle \otimes \ldots\left|x_{N}\right\rangle$.

$$
\begin{equation*}
\underset{\substack{\text { position operator in i-th } \\ \text { single-particle Hilbert space }}}{\hat{x}_{i}\left|x_{1}, x_{2}, \ldots, x_{N}\right\rangle}=\underset{\text { eigenvalue }}{x_{i}\left|x_{1}, x_{2}, \ldots, x_{N}\right\rangle} \tag{1}
\end{equation*}
$$

N -particle wavefunction:

$$
\begin{equation*}
\left\langle x_{1}, x_{2}, \ldots, x_{N} \mid \lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\rangle \stackrel{(4.3)}{=} N \sum_{P} S_{P} \psi_{\lambda_{P_{1}}}\left(x_{1}\right) \psi_{\lambda_{P_{2}}}\left(x_{2}\right) \ldots \psi_{\lambda_{P_{N}}}\left(x_{N}\right) \tag{3}
\end{equation*}
$$

'Exchange symmetry':

$$
\begin{equation*}
\left\langle\ldots, x_{i}, \ldots, x_{i}, \ldots \mid\left\{\lambda_{j}\right\}\right\rangle \stackrel{(3)}{=} S\left\langle\ldots, x_{i^{\prime}}, \ldots, x_{i}, \ldots \mid\left\{\lambda_{j}\right\}\right\rangle \tag{4}
\end{equation*}
$$

For fermions, wavefunction is a determinant:
'Slater determinant'
Antisymmetry of determinant under exchange of rows or columns implies:
$\left\langle\left\{x_{i}\right\} \mid\left\{\lambda_{j}\right\}\right\rangle \stackrel{(5)}{=}$ if $\left\{\begin{array}{ll}\lambda_{j}=\lambda_{j} & \text { two particles in same state } \\ x_{i}=x_{i^{\prime}} & \text { two particles at same position }\end{array}\right\} \begin{gathered}\text { 'Pauli exclusion } \\ \text { principle' }\end{gathered}$

N-particle basis: occupation number representation

Due to exchange symmetry, we can fully specify a basis state

$$
\begin{equation*}
\left|\lambda_{1}, \lambda_{2}, \ldots, \lambda_{N}\right\rangle=\mathcal{N} \sum_{P} \zeta_{p}\left|\lambda_{p_{1}}\right\rangle \oplus\left|\lambda_{p_{2}}\right\rangle \otimes \ldots\left|\lambda_{p_{3}}\right\rangle=\left|n_{0}, n_{1}, n_{2}, \ldots\right\rangle \tag{1}
\end{equation*}
$$

by specifying how many particles, n_{λ}, populate each $|\lambda\rangle$, with $\sum_{\lambda} n_{\lambda}=N$.
For 'bosons', $n_{\lambda} \in \mathbb{N}_{0}$: each $|\lambda\rangle$ can contain arbitrarily many bosons.
For 'fermions', $n_{\lambda} \in\{0,1\}$: each $|\lambda\rangle$ can contain at most one fermion ('Pauli principle')(4)

Examples: the states on the right are denoted as

$$
\begin{array}{cc}
\lambda_{j} \text { representation } & n_{\lambda} \text { representation } \\
\left|\lambda_{1}=0, \lambda_{2}=0, \lambda_{3}=3\right\rangle=\left|n_{0}=2, n_{1}=0, n_{2}=0, n_{3}=1, n_{4}=0, \ldots\right\rangle \\
\left|\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=3\right\rangle=\left|n_{0}=1, n_{1}=1, n_{2}=0, n_{3}=1, n_{4}=0, \ldots\right\rangle
\end{array}
$$

N-particle Fork space: $\mathcal{F}_{(N)}=\operatorname{span}\left\{\left|n_{0}, n_{1}, n_{2}, \ldots\right\rangle \left\lvert\,, n_{i} \in\left\{\begin{array}{c}\mathbb{N}_{0} \\ \{0,1\}\end{array}\right\}\right., \begin{array}{l}\text { bosons } \\ \text { fermions }\end{array} \sum_{\lambda} n_{\lambda}=N\right\}$
It is often convenient to not impose the condition of fixed particle number N. Then consider
(many-particle)
Fock space:

$$
\mathcal{F}=\sum_{\oplus N}^{\infty} \mathcal{F}_{(N)}=\operatorname{span}\left\{\left|n_{0}, n_{1}, n_{2}, \ldots\right\rangle\right\} \quad \begin{gather*}
\text { total particle } \tag{2}\\
\text { number not fixed }
\end{gather*}
$$

'Vacuum space': $\mathcal{F}(0)=\operatorname{span}\{|\Omega\rangle\}, \quad|\Omega\rangle=|0,0,0, \ldots\rangle \quad$ 'vacuum state'

Define 'creation operators' connecting states which differ by 1 for specified occupation number:

$$
\begin{equation*}
a_{\lambda}^{\dagger}\left|n_{0}, \ldots, n_{\lambda}, \ldots\right\rangle=\left(n_{\lambda}+1\right)^{1 / 2} \zeta^{s_{\lambda}}\left|n_{0}, \ldots, n_{\lambda}+1, \ldots\right\rangle, \tag{4}
\end{equation*}
$$

creates particle in state λ
'fermionic sign' depends on how many 'earlier' states are occupied: $S_{\lambda}=\sum_{\tilde{\lambda}=0}^{\lambda-1} n_{\tilde{\lambda}}$
For fermions, occupation numbers are defined modulo 2, i.e. $(1+1) \bmod 2=0$
so, $\quad a_{\lambda}^{\dagger}\left|n_{0}, \ldots, n_{\lambda}=1, \ldots\right\rangle \propto((1+1) \bmod 2)^{1 / 2}=0 \quad$ [this encodes Pauli principle (6.4)]
All states can be obtained from
vacuum state by repeated action of a^{t} 's: $\left|n_{0}, n_{1}, n_{2}, \ldots\right\rangle=N\left(a_{0}^{\dagger}\right)^{n_{0}}\left(a_{1}^{\dagger}\right)^{n_{1}}\left(a_{2}^{\dagger}\right)^{n_{2}} \ldots|\Omega\rangle$

(Anti)-commutation relations $\left[a^{+}, a^{+}\right]$

Def: $[A, B]_{\zeta} \equiv A B-\zeta B A=\left\{\begin{array}{l}A B-B A=[A, B]=\text { commutator, for bosons } \\ A B+B A=\{A, B\}=\text { anti-commutator, for fermions }\end{array}\right.$

Claim: creation operators satisfy

$$
\left[a_{\lambda}^{+}, a_{\lambda}^{+}\right]_{S}=0
$$

Proof:

$$
\begin{equation*}
s_{\lambda}=\sum_{\tilde{\lambda}=0}^{\lambda-1} n_{\tilde{\lambda}} \tag{3}
\end{equation*}
$$

- Equal indices, $\lambda=\lambda^{\prime}$: For bosons, $a_{\lambda}^{+} a_{\lambda}^{t}-a_{\lambda}^{f} a_{\lambda}^{t}=0 \quad$ (trivially true)

For fermions: $\left.\quad a_{\lambda}^{\dagger} a_{\lambda}^{\dagger}\left|\ldots, n_{\lambda}=0, \ldots\right\rangle=a_{\lambda}^{\dagger} \rho^{S_{\lambda}}, 1 \ldots, n_{\lambda}=1, \ldots\right\rangle \stackrel{(7.6)}{=} 0$
This holds for all states in \mathcal{F}, hence $a_{\lambda}^{+} a_{\lambda}^{+}=0$, and also $a_{\lambda}^{+} a_{\lambda}^{+}+a_{\lambda}^{+} a_{\lambda}^{+}=0$

- Unequal indices, $\lambda \neq \lambda^{\prime}$:

Simplest example: action on vacuum state, $|\Omega\rangle=\left|n_{0}=0, n_{1}=0, n_{2}=0, \ldots\right\rangle$:

$$
\begin{align*}
& a_{1}^{+} a_{0}^{+}|0,0,0,0, \ldots\rangle \stackrel{(7.4)}{=} a^{+} \int^{0}|1,0,0,0, \ldots\rangle \stackrel{(7.4)}{=} \int^{1}|1,1,0,0, \ldots\rangle \tag{7}\\
& a_{0}^{+} a_{1}^{+}|0,0,0,0, \ldots\rangle^{(7.4)}=a_{0}^{+} \zeta^{0}|0,1,0,0, \ldots\rangle \stackrel{(7.4)}{=} S^{0}|1,1,0,0, \ldots\rangle \tag{8}\\
\Rightarrow & \left(a_{1}^{+} a_{0}^{+}-\zeta a_{0}^{+} a_{1}^{+}\right)|0,0,0,0, \ldots\rangle=0
\end{align*}
$$

General case: assume (without loss of generality) $\lambda<\lambda^{\prime}$:
(5) holds for all basis kets $\left|\ldots, n_{1}, \ldots, n_{1}, \ldots\right\rangle$ of \mathcal{F}, hence it is an operator identity:

$$
\begin{equation*}
\left[a_{\lambda}^{+}, a_{\lambda^{\prime}}^{+}\right]_{\xi}=a_{\lambda}^{+} a_{\lambda^{\prime}}^{t}-\zeta a_{\lambda^{\prime}}^{+} a_{\lambda}^{+}=0 \tag{6}
\end{equation*}
$$

'boson creation operators commute, fermion creation operators anti-commute'
(Anti)-commutation relations $[a, a]$
Recall definition of creation operator: $\quad a_{\lambda}^{\prime}\left|n_{0}^{\prime}, \ldots, n_{\lambda}^{\prime}, \ldots\right\rangle=\left(n_{\lambda}^{\prime}+1\right)^{1 / 2} \int^{s_{\lambda}}\left|n_{0}^{\prime}, \ldots, n_{\lambda}^{\prime}+1, \ldots\right\rangle$
$\underset{\text { Matrix }}{\text { Casements: }} \quad\left\langle n_{0}, \ldots, n_{\lambda}, \ldots\right| a_{\lambda}^{\prime}\left|n_{0}^{\prime}, \ldots, n_{\lambda}^{\prime}, \ldots\right\rangle=\left(n_{\lambda}^{\prime}+1\right)^{1 / 2} \zeta^{\delta_{\lambda}} \delta_{n_{0}, n_{0}^{\prime}} \ldots \delta_{n_{\lambda}}, n_{\lambda}^{\prime}+1 \ldots$

$$
n_{\lambda}=n_{3}^{\prime}
$$

$$
\text { rewrite }\left\{\begin{array}{l}
n_{2}=n_{2}^{\prime}+1 \tag{2}\\
n_{2}^{\prime}=n_{2}-1
\end{array}\right.
$$

$\begin{aligned} & \text { Complex } \\ & \text { conjugate: }\end{aligned}\left\langle n_{0}^{\prime}, \ldots, n_{\lambda}^{\prime}, \ldots\right| a_{\lambda}\left|n_{0}, \ldots, n_{\lambda}, \ldots\right\rangle=\left(n_{\lambda}\right)^{1 / 2} \zeta^{\delta \lambda} \delta_{n_{0}, n_{0}} \ldots \delta_{n_{\lambda}, n_{\lambda}-1} \ldots$
(3) holds for all basis bras $\left\langle\ldots, n_{1}^{\prime}, \ldots, n_{1^{\prime}}^{\prime}, \ldots l\right.$ of \mathcal{F}, hence we conclude that

$$
\begin{equation*}
a_{\lambda}\left|n_{0}, \ldots, n_{\lambda}, \ldots\right\rangle=\left(n_{\lambda}\right)^{1 / 2} \zeta^{S_{\lambda}}\left|n_{0}, \ldots, n_{\lambda}-1, \ldots\right\rangle \tag{4}
\end{equation*}
$$

ie. a_{λ} 'annihilates' or 'destroys' a particle in state λ.

Action in Fock space:

$$
\begin{equation*}
\text { Hermitian conjugate of (9.6): } \quad\left[a_{\lambda}, a_{\lambda^{\prime}}\right]_{\xi}=a_{\lambda} a_{\lambda^{\prime}}-\zeta a_{\lambda^{\prime}} a_{\lambda}=0 \tag{6}
\end{equation*}
$$

$$
\begin{align*}
& a_{\lambda}^{+} a_{\lambda^{\prime}}^{f}\left|\ldots, n_{\lambda}, \ldots, n_{\lambda^{\prime}}, \ldots\right\rangle=\quad\left(n_{\lambda^{\prime}+1}\right)^{1 / 2} a_{\lambda}^{+} \quad \int^{s_{\lambda}}\left|\ldots, n_{\lambda}, \ldots, n_{\lambda^{\prime}}+1, \ldots\right\rangle \tag{1}\\
& =\left(n_{\lambda}+1\right)^{1 / 2}\left(n_{\lambda}^{\prime}+1\right)^{1 / 2} \delta^{S_{\lambda}} S^{s_{\lambda}}\left|\ldots, n_{\lambda+1}, \ldots, n_{\lambda^{\prime}+1}, \ldots\right\rangle \tag{2}\\
& \left.a_{\lambda^{\prime}}^{+} a_{\lambda}^{+}\left|\ldots, n_{\lambda}, \ldots, n_{\lambda^{\prime}}, \ldots\right\rangle=\left.\quad\left(n_{\lambda}+1\right)^{1 / 2} a_{\lambda^{\prime}}^{+} \zeta^{s_{\lambda}}\right|_{\longmapsto \sim}, n_{\lambda+1}, \ldots, n_{\lambda^{\prime}}, \ldots\right\rangle \tag{3}\\
& =\left(n_{\lambda^{\prime}+1}\right)^{1 / 2}\left(n_{\lambda}+1\right)^{1 / 2} \zeta \delta^{s_{\lambda}} \zeta^{s_{\lambda}}\left|\ldots, n_{\lambda}+1, \ldots, n_{\lambda^{\prime}}+1, \ldots\right\rangle \tag{4}\\
& \left(a_{\lambda}^{+} a_{\lambda^{\prime}}^{+}-\zeta a_{\lambda^{\prime}}^{+} a_{\lambda}^{+}\right)\left|\ldots, n_{\lambda}, \ldots, n_{\lambda^{\prime}}, \ldots\right\rangle \stackrel{(2, k)}{=} 0 \tag{s}
\end{align*}
$$

(Anti)-commutation relations $\left[a, a^{\dagger}\right]$
Consider equal indices: $\lambda=\lambda^{\prime}$:

$$
\begin{align*}
& a_{\lambda} a_{\lambda}^{\dagger}\left|\ldots, n_{\lambda}, \ldots\right\rangle=a_{\lambda}\left(n_{\lambda+1}\right)^{y_{2}} \rho^{s_{\lambda}}\left|\ldots, n_{\lambda}+1, \ldots\right\rangle=\left(n_{\lambda+1}\right)^{y_{2}+\frac{1}{2}} \underbrace{\left(\int^{s_{\lambda}}\right)^{2}}_{=1}\left|\ldots, n_{\lambda}, \ldots\right\rangle \tag{1}\\
& a_{\lambda}^{\dagger} a_{\lambda}\left|\ldots, n_{\lambda}, \ldots\right\rangle=a_{\lambda}^{\dagger}\left(n_{\lambda}\right)^{y_{2}} \zeta^{s_{\lambda}}\left|\ldots, n_{\lambda}-1, \ldots\right\rangle=\left(n_{\lambda}\right)^{y_{2}+2} \overbrace{\left(S^{s_{\lambda}}\right)^{2}}\left|\ldots, n_{\lambda}, \ldots\right\rangle \tag{2}
\end{align*}
$$

Bosons:

$$
\begin{equation*}
\left.\left(a_{\lambda} a_{\lambda}^{+}-a_{\lambda}^{+} a_{\lambda}\right) \mid \ldots, n_{\lambda}, \ldots\right)^{(1,2)}=1 \cdot\left|\ldots, n_{\lambda}, \ldots\right\rangle \Rightarrow a_{\lambda} a_{\lambda}^{+}-a_{\lambda}^{+} a_{\lambda}=1 \tag{3}
\end{equation*}
$$

holds for all basis kets!
Fermions:

$$
\begin{align*}
& \left(a_{\lambda} a_{\lambda}^{\dagger}+\underline{a}_{\lambda}^{+} a_{\lambda}\right)\left|\ldots, n_{\lambda}=0, \ldots\right\rangle=(1+\underline{0})\left|\ldots, n_{\lambda}=0, \ldots\right\rangle=\left|\ldots, n_{\lambda}=0, \ldots\right\rangle \tag{4}\\
& \left(\underline{a_{\lambda} a_{\lambda}^{+}}+\underline{a_{\lambda}^{+} a_{\lambda}}\right)\left|\ldots, n_{\lambda}=1, \ldots\right\rangle=(\underline{(1+1) \bmod 2}+\underline{1})\left|\ldots, n_{\lambda}=1, \ldots\right\rangle=\left|\ldots, n_{\lambda}=1, \ldots\right\rangle \tag{s}\\
& (4,5) \text { hold for all basis bets! } \Rightarrow a_{\lambda} a_{\lambda}^{+}+a_{\lambda}^{+} a_{\lambda}=1 \tag{6}
\end{align*}
$$

$$
\begin{equation*}
\text { Compact formulation of (3) \& (6): } \quad\left[a_{\lambda}, a_{\lambda}^{+}\right]_{\xi}=1 \tag{7}
\end{equation*}
$$

(Anti)-commutation relations $\left[a, a^{\dagger}\right]$
General case: assume (without loss of generality) $\lambda<\lambda^{\prime}$ (analogous to p. 9): $s_{\lambda}=\sum_{\tilde{\lambda}=0}^{\lambda-1} n_{\tilde{\lambda}}$

$$
\begin{align*}
& a_{\lambda} a_{\lambda^{\prime}}^{\dagger}\left|\ldots, n_{\lambda}, \ldots, n_{\lambda^{\prime}}, \ldots\right\rangle=\left(n_{\lambda^{\prime}+1}\right)^{1 / 2} a_{\lambda}^{+} S^{S_{\lambda}^{\prime}}\left|\ldots, n_{\lambda}, \ldots, n_{\lambda^{\prime}}+1, \ldots\right\rangle \tag{1}\\
& =\left(n_{\lambda}\right)^{1 / 2}\left(n_{\lambda}+1\right)^{1 / 2} \rho^{s_{\lambda}} \rho^{S_{\lambda^{\prime}}}\left|\ldots, n_{\lambda}-1, \ldots, n_{\lambda^{\prime}}+1, \ldots\right\rangle \tag{2}\\
& a_{\lambda^{\prime}}^{+} a_{\lambda}\left|\ldots, n_{\lambda}, \ldots, n_{\lambda^{\prime}}, \ldots\right\rangle=\quad\left(n_{\lambda}\right)^{1 / 2} a_{\lambda^{\prime}}^{+} \zeta^{s_{\lambda}}\left|\ldots, n_{\lambda-1}, \ldots, n_{\lambda}, \ldots\right\rangle \tag{3}\\
& \left.\left.=\left(n_{\lambda}+1\right)^{1 / 2}\left(n_{\lambda}\right)^{1 / 2} \int S^{s_{\lambda}^{\prime}} S^{s_{\lambda}} \mid \ldots, n_{\lambda}-1\right) \ldots, n_{\lambda^{\prime}}+1, \ldots\right\rangle \tag{4}\\
& \left.\left(a_{\lambda} a_{\lambda^{\prime}}^{+}-\zeta a_{\lambda}^{+} a_{\lambda}\right) \mid \ldots, n_{1}, \ldots, n_{\lambda^{\prime}}, \ldots\right)^{(2,4)}=0 \Rightarrow a_{\lambda} a_{\lambda^{\prime}}^{+}-\zeta a_{\lambda^{\prime}}^{+} a_{\lambda}=0 \text { if } \lambda \neq \lambda^{\prime} \tag{5}
\end{align*}
$$

holds for all basis kets!
Summary: $\left[a_{\lambda}^{+}, a_{\lambda^{\prime}}^{+}\right]_{\zeta}=0,\left[a_{\lambda}, a_{\lambda}\right]_{\zeta}=0, \quad\left[a_{\lambda}, a_{\lambda}{ }^{\prime}\right]_{\zeta}=\delta_{\lambda \lambda^{\prime}}$
'boson operators commute, fermion creation anti-commute', except for $\left[a_{\lambda}, a_{\lambda}^{+}\right]_{\zeta}=1$
Given complex structure of Fock space, these relations are remarkably simple!

Change of basis
The single-particle states used above must form a basis of $\ell_{(1)}$, satisfying for discrete index
for continuous index, e.g. $\lambda=x$

- orthogonality:
- completeness:

We make identifcation:

$$
|\lambda\rangle=a_{\lambda}^{+}|\Omega\rangle
$$

Consider change of basis:

$$
\begin{aligned}
& \left\langle\lambda^{\prime} \mid \lambda\right\rangle=\delta_{\lambda^{\prime} \lambda} \\
& \sum_{\lambda}|\lambda\rangle\langle\lambda|=\mathbb{1}
\end{aligned}
$$

$$
|\tilde{\lambda}\rangle=\sum_{\lambda}|\lambda\rangle\langle\lambda \| \tilde{\lambda}\rangle
$$

Correspondingly:

$$
a_{\tilde{\lambda}}^{+}=\sum_{\lambda} a_{\lambda}^{t}\langle\lambda \mid \tilde{\lambda}\rangle
$$

$$
a_{\tilde{\lambda}}=\sum_{\lambda}\langle\tilde{\lambda} \mid \lambda\rangle a_{\lambda}
$$

(anti)-commutation relations preserve their form:
If $\left[a_{\lambda}, a_{\lambda^{\prime}}^{+}\right]_{\xi}=\delta_{\lambda \lambda}{ }^{\prime}$, then

$$
\begin{aligned}
& {[\underline{\left.a_{\hat{\lambda}}, a_{\underline{\lambda^{\prime}}}^{+}\right]_{\xi}=\langle\tilde{\lambda}|[\sum_{\lambda \lambda^{\prime}}|\lambda\rangle \overbrace{\left[a_{\lambda}, a_{\lambda^{\prime}}^{+}\right]}^{(7 a)} \delta_{\lambda \lambda^{\prime}}}\left\langle\lambda^{\prime}\right|]\left|\tilde{\lambda}^{\prime}\right\rangle} \\
& =\langle\hat{\lambda}| \sum_{\lambda}|\lambda\rangle\left\langle\lambda \mid \tilde{\lambda}^{\prime}\right\rangle^{(2 a)}=\langle\tilde{\lambda}| \hat{1}\left|\tilde{\lambda}^{\prime}\right\rangle=\delta \tilde{\lambda} \tilde{\jmath}^{\prime}
\end{aligned}
$$

(fa) If $\left[a_{x}, a_{x^{\prime}}^{+}\right]_{S}=\delta\left(x-x^{\prime}\right)$.
(Ba)
then similarly,

$$
\begin{equation*}
\left[a_{p}, a_{p}^{+}\right]_{\rho}=\delta\left(p-p^{\prime}\right) \tag{qa}
\end{equation*}
$$

(Ia)	$\left\langle x^{\prime} \mid x\right\rangle=\delta\left(x^{\prime}-x\right)$	
(ra)	$\int d x\|x\rangle\langle x\|=\mathbb{1}$	
(sa)	$\|x\rangle=a^{+}(x)\|\Omega\rangle$	
(fa)	$\|p\rangle=\int d x\|x\rangle\langle x \\| p\rangle$	
(sa)	$a^{\dagger}(p)=\int d x a^{+}(x)\langle x \mid p\rangle$	
(ba)	$a(p)=\int d x\langle p \mid x\rangle a(x)$	

Representation of one-body operators
Def: 'occupation number operator': $\hat{n}_{\lambda}=a_{\lambda}^{\dagger} a_{\lambda}$ with $\hat{n}_{\lambda}\left|\ldots, n_{\lambda}, \ldots\right\rangle^{\text {operator }}=n_{\lambda}^{(11.2)} n_{\lambda}^{\text {eigenvalue }}\left|\ldots, n_{\lambda}, \ldots\right\rangle$
Diagonal one-body operator:

$$
\begin{equation*}
\hat{O}_{(1)}=\sum_{\lambda}|\lambda\rangle O_{\lambda}\langle\lambda|, \quad O_{\lambda \lambda^{\prime}}=\langle\lambda| \hat{o}\left|\lambda^{\prime}\right\rangle=O_{\lambda} \delta_{\lambda \lambda^{\prime}} \tag{i}
\end{equation*}
$$

When acting in $F: \quad \hat{O}=\sum_{N=0}^{\infty} \sum_{i=1}^{N} \mathbb{1}_{(1)} \oplus \ldots \oplus \mathbb{1}_{(1)} \oplus \hat{O}_{(1)} \oplus \mathbb{1}_{(1)} \oplus \oplus \mathbb{1}_{(1)}$
acts in i-th of N single-particle spaces: is the single particle there found in the single-particle state $|\lambda\rangle$?
Many-body matrix elements: total number of particles found in single-particle state λ

$$
\begin{align*}
\left\langle n_{0}, n_{1}, n_{2}, \ldots\right| \hat{O}\left|n_{0}^{\prime}, n_{1}^{\prime}, n_{2}^{\prime}, \ldots\right\rangle & =\sum_{\lambda}\left\langle n_{0}, n_{1}, n_{2}, \ldots\right| o_{\lambda} n_{\lambda}^{\prime}\left|n_{0}^{\prime}, n_{1}^{\prime}, n_{2}^{\prime}, \ldots\right\rangle \tag{4}\\
& =\left\langle n_{0}, n_{1}, n_{2}, \ldots\right| \sum_{\lambda} o_{\lambda} \hat{n}_{\lambda}\left|n_{0}^{\prime}, n_{1}^{\prime}, n_{2}^{\prime}, \ldots\right\rangle \tag{5}
\end{align*}
$$

(5) holds for all basis kets of \mathcal{F},
\Rightarrow operator identity: $\quad \hat{O}=\sum_{\lambda} 0_{\lambda} \hat{n}_{\lambda}=\sum_{\lambda} a_{\lambda}^{+}\langle\lambda| 0|\lambda\rangle a_{\lambda}$
Simply count the number of particles in single-particle state λ and multiply by eigenvalue!
Transformed to a general (non-diagonal) basis:

$$
\begin{equation*}
\hat{O}=\sum_{\lambda \lambda^{\prime}} a_{\lambda}^{t}\langle\lambda| O\left|\lambda^{\prime}\right\rangle a_{\lambda^{\prime}}=\sum_{\lambda \lambda^{\prime}} a_{\lambda}^{+} O_{\lambda \lambda^{\prime}} a_{\lambda^{\prime}} \tag{7}
\end{equation*}
$$

Examples of one-body operators
Various single-particle bases: energy eigenbasis position basis momentum basis
Total particle number:

$$
\begin{equation*}
\hat{N}=\sum_{\lambda} \hat{n}_{\lambda}=\int d x \underbrace{a^{t}(x) a(x)}_{=\hat{\rho}(x)}=\int d p a^{t}(p) a(p) \tag{1}
\end{equation*}
$$

Kinetic energy:

$$
\begin{equation*}
\hat{H}_{\text {kin }}=\sum_{\lambda} \varepsilon_{\lambda} \hat{n}_{\lambda}=\int d p \frac{p^{2}}{2 m} a^{+}(p) a(p) \tag{2}
\end{equation*}
$$

Potential

$$
\begin{equation*}
\hat{H}_{p o t}=\int d x V(x) a^{\dagger}(x) a(x) \tag{3}
\end{equation*}
$$

Lattice Hamiltonian:

$$
\hat{H}_{\text {lat }}=\sum_{\substack{i \\ \text { onsite energy }}} \varepsilon_{i} c_{i}^{t} c_{i}+\sum_{i j} t\left(c_{i}^{t} c_{j}+c_{j}^{t} c_{i}\right)
$$

on-site energy hopping between sites i and j

Zeeman field coupling to electron spin:

$$
\left(t=1, g \mu_{B}=1\right)
$$

$$
\begin{equation*}
\hat{H}_{\text {zeeman }}=\sum_{i} \hat{S}_{i} \cdot \vec{B} \quad \hat{S}_{i}=\sum_{\sigma \sigma^{\prime}} a_{i \sigma}^{f}\left(\frac{1}{2} \vec{\tau}_{\sigma \sigma^{\prime}}\right) a_{i \sigma} \tag{5}
\end{equation*}
$$

spin operator

Pauli matrices $\sigma \in f, \downarrow$

Representation of two-body operators
Interaction potential between particles at positions $x_{i}, x_{j}: \quad V\left(x_{i}, x_{j}\right)=V\left(x_{j}, x_{i}\right)$
We seek many-body operator \hat{V} such that

$$
\begin{equation*}
\hat{V}\left|x_{1}, x_{2}, \ldots, x_{N}\right\rangle=\sum_{i<j}^{N} V\left(x_{i}, x_{j}\right)\left|x_{1}, x_{2}, \ldots, x_{N}\right\rangle=\frac{1}{2} \sum_{i \neq j}^{N} V\left(x_{i}, x_{j}\right)\left|x_{1}, x_{2}, \ldots, x_{N}\right\rangle \tag{2}
\end{equation*}
$$

Ansatz: $\quad \hat{V}=\frac{1}{2} \int d x \int d x^{\prime} a^{f}(x) a^{+}\left(x^{\prime}\right) V\left(x, x^{\prime}\right) a\left(x^{\prime}\right) a(x)$
Interpretation: 'take out two particles at x and x ', let them feel the interaction, and put them back in'.
\quad Note: $\quad a(x) a^{t}\left(x_{i}\right)^{(13.7 b)}=\zeta a^{f}\left(x_{i}\right) a(x)+\delta\left(x-x_{i}\right)$
Check (3): act with \hat{V} on N-particle position eigenstate:

$$
\begin{gather*}
\left.a^{\dagger}(x) a^{+}\left(x^{\prime}\right) a\left(x^{\prime}\right) a(x)\left|x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{N}\right\rangle=a^{\dagger}(x) a^{+}\left(x^{\prime}\right) a\left(x^{\prime}\right) a(x) a^{+}\left(x_{1}\right) a^{+}\left(x_{2}\right) \ldots a^{t}\left(x_{i}\right) \ldots a^{+}\left(x_{N}\right) \mid \Omega\right) \tag{s}\\
\text { commute } a(x) \text { to the right: } \quad \text { vacuum state is empty: } a(x)|\Omega\rangle=0
\end{gather*}
$$ each commutation operation yields an extra $\delta\left(x-x_{i}\right)$

$$
\stackrel{\text { (4) }}{=} \sum_{i=1}^{N} \delta\left(x-x_{i}\right) \zeta^{i-1} a^{t}(x) \underbrace{a^{t}\left(x^{\prime}\right) a\left(x^{\prime}\right)}_{\hat{\rho}\left(x^{\prime}\right)} a^{t}\left(x_{1}\right) \ldots a^{f}\left(x_{i-1}\right) a^{t}\left(x_{i+1}\right) \ldots a^{t}\left(x_{N}\right) \mid \Omega)
$$

commute $a^{+}(x)$ to the right until it sits between $a^{+}\left(x_{i-1}\right), a^{+}\left(x_{i+1}\right)$

$$
\begin{equation*}
\stackrel{(5)}{=} \sum_{i=1}^{N} \delta\left(x-x_{i}\right) \sum_{j \neq i}^{N} \delta\left(x^{\prime}-x_{j}\right) \underbrace{\int^{i-1} \rho^{i-1}}_{=1} \underbrace{a^{+}\left(x_{1}\right)}, \underbrace{a^{+}\left(x_{i-1}\right) \stackrel{+}{a}(x)} a_{=x_{i}}^{+}\left(x_{i+1}\right) \ldots a^{+}\left(x_{N}\right) \mid \Omega) \tag{1}
\end{equation*}
$$

Now multiply by $\frac{1}{2} V\left(x, x^{\prime}\right)$ and integrate over x and x^{\prime}, as in (16.3):

$$
\begin{align*}
\hat{V}\left|x_{1}, x_{2}, \ldots, x_{N}\right\rangle & =\frac{1}{2} \int d x \int d x^{\prime} \frac{1}{2} V\left(x, x^{\prime}\right) \underbrace{a^{f}(x) a^{+}\left(x^{\prime}\right) a\left(x^{\prime}\right) a(x)\left|x_{1}, x_{2}, \ldots, x_{i}, \ldots, x_{N}\right\rangle}_{=(17.1)} \tag{3}\\
& \stackrel{(1)}{=} \frac{1}{2} \sum_{i=1}^{N} \sum_{j \neq i}^{N} V\left(x_{i}, x_{j}\right) a^{\left.+f\left(x_{1}\right) \ldots a^{+}\left(x_{i-1}\right) a^{f}\left(x_{i}\right) a^{+}\left(x_{i+1}\right) \ldots a^{+}\left(x_{N}\right) \mid \Omega\right)} \tag{4}\\
& =(16.2)
\end{align*}
$$

Hence, Ansatz (16.3) does yield the result (16.2), as required.
A general two-body operator with matrix elements $\left\langle\lambda, \eta \| \hat{O} \mid \lambda^{\prime}, \eta^{\prime}\right\rangle$ can be expressed as

$$
\begin{align*}
& \hat{O}=\sum_{\lambda, \lambda^{\prime} \eta} a_{\lambda}^{+} a_{\eta}^{+}\langle\lambda, \eta| \hat{O}\left|\lambda^{\prime}, \eta^{\prime}\right\rangle a_{\eta^{\prime}} a_{\lambda^{\prime}} \tag{5}\\
& \text { mnemonic: } \quad|\lambda, \eta\rangle\langle\lambda, \eta| \hat{o}\left|\lambda^{\prime}, \eta^{\prime}\right\rangle\left\langle\lambda^{\prime}, \eta^{\prime}\right|
\end{align*}
$$

