Exercises on General Relativity TVI TMP-TC1

Problem set 3

Exercise 1 - Ricci calculus

(i) Given a function $f\left(x^{\alpha}\right)$ the corresponding one-form $\mathrm{d} f$ is

$$
\begin{equation*}
\mathrm{d} f=\sum_{\alpha} \frac{\partial f}{\partial x^{\alpha}} \mathrm{d} x^{\alpha} \tag{1}
\end{equation*}
$$

Determine the one-forms $\mathrm{d} f_{i}$ for the functions

$$
\begin{equation*}
f_{1}(x, y)=x y \quad \text { and } \quad f_{2}(x, y)=\sqrt{x^{2}+y^{2}} \tag{2}
\end{equation*}
$$

and compute the corresponding vector fields.
(ii) Consider a rank 2 tensor X and a vector V which have in a coordinate neighborhood the following components

$$
X^{\mu \nu}=\left(\begin{array}{cccc}
2 & 0 & 1 & -1 \tag{3}\\
-1 & 0 & 3 & 2 \\
-1 & 1 & 0 & 0 \\
-2 & 1 & 1 & -2
\end{array}\right), V^{\mu}=(-1,2,0,-2)
$$

Find the components of $X_{\nu}^{\mu}, X_{\mu}^{\nu}, X_{\lambda}^{\lambda}, V^{\mu} V_{\mu}$, and $V_{\mu} X^{\mu \nu}$. Use the Minkowski metric $\eta_{\mu \nu}$ to raise and lower the indices, e.g. $A^{\mu}=\eta^{\mu \nu} A_{\nu}$ and $A_{\mu}=\eta_{\mu \nu} A^{\nu}$, where $\eta^{\mu \nu}$ are the components of the inverse of the metric.

Exercise 2 - (Lorentz) Tensors

Consider the following expressions and explicitly determine whether they are Lorentz tensors and or general tensors.
(i) $\partial_{\mu} \phi$,
(ii) $\partial_{\mu} A_{\nu}$,
(iii) $F_{\mu \nu}:=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}$,
(iv) $S_{\mu \nu}:=\partial_{\mu} A_{\nu}+\partial_{\nu} A_{\mu}$
where ϕ is a scalar field and A is a Lorentz vector.
Hint: Bear in mind, that a proper tensor is a general geometrical quantity with components having the following transformation properties under coordinate transformations $\boldsymbol{x} \rightarrow \tilde{\boldsymbol{x}}(\boldsymbol{x})$:

$$
\begin{equation*}
\tilde{T}_{\tilde{\nu_{1}} \cdots \tilde{\nu_{l}}}^{\tilde{\mu}_{1} \cdots \tilde{\mu_{k}}}=T_{\nu_{1} \cdots \nu_{l}}^{\mu_{1} \cdots \mu_{k}} \frac{\partial \tilde{x}^{\tilde{\mu_{1}}}}{\partial x^{\mu_{1}}} \cdots \frac{\partial x^{\nu_{l}}}{\partial \tilde{x}^{\tilde{\nu_{l}}}} \tag{4}
\end{equation*}
$$

Exercise 3 - From oscillators to field theory

Consider a system of N point particles, each with mass m, which are connected with harmonic oscillators, imaginable as springs with spring constant k. At rest, two particles connected with a spring are separated by a distance d. The kinetic energy of the whole system is given by

$$
\begin{equation*}
T=\frac{1}{2} \sum_{j=1}^{N} m \dot{x}_{j}^{2} \tag{5}
\end{equation*}
$$

with $x_{j}:=x_{j}(t)$ denoting the position of the j-th particle with respect to its position at rest. We assume the maximum elongation of the springs to be small such that we have for the potential energy

$$
\begin{equation*}
V=\frac{1}{2} \sum_{j=1}^{N} m \omega^{2}\left(x_{j+1}-x_{j}\right)^{2} \tag{6}
\end{equation*}
$$

with $\omega=\sqrt{\frac{k}{m}}$.
(i) Show that we can express the Lagrange function as

$$
\begin{equation*}
L=\frac{1}{2} \sum_{j=1}^{N} d\left(\dot{x}_{j}^{2}-\omega^{2} d^{2} \frac{\left(x_{j+1}-x_{j}\right)^{2}}{d^{2}}\right) \tag{7}
\end{equation*}
$$

(ii) Perform the limit $d \rightarrow 0$ and $N \rightarrow \infty$ and regard the positions of the particles to be continuous. Furthermore, rewrite $x_{j}(t) \rightarrow \phi(t, x)=: \phi(x)$.
(iii) We write $d^{2} \omega^{2} \rightarrow v^{2}$ and demand it to be the speed of light to obtain a Lorentz-invariant action. Show that the action becomes

$$
\begin{equation*}
S=-\frac{1}{2} \int \mathrm{~d}^{4} x \sqrt{-\eta} \partial_{\mu} \phi \partial^{\mu} \phi \tag{8}
\end{equation*}
$$

where $\partial^{\mu}=\eta^{\mu \nu} \partial_{\nu}=-\frac{1}{c^{2}} \partial_{t}+\partial_{x}$ and $\eta_{\mu \nu}$ is the Minkowski metric and η is its determinant.
(iv) Construct for the real scalar field $\phi(x)$ the most general action in four dimensional spacetime. In order to achieve this use only positive powers of the following objects: the real scalar field ϕ, a constant Λ with mass dimension $[\Lambda]=[\phi]$ and the partial derivative ∂_{μ}.
Hint: You do not need to specify dimensionless constants and signs. Work in natural units for particle physics: $c=\hbar=k_{B}=1$.
(v) Derive the equation of motion of the previously found action and discuss the physical meaning of each term.

General information

The lecture takes place on Monday at 10:00-12:00 and on Wednesday at 10:00-12:00 in A348.
Presentation of solutions:
Thursday at 08:00-10:00 in A 348
There are two tutorials:
Monday at 12:00-14:00 in A 249
Friday at 14:00-16:00 in A 348
The webpage for the lecture and exercises can be found at

```
www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/tvi_tc1_gr/index.html
```

