Prof. Dr. Stefan Hofmann

Winter term 2019/20

Exercises on General Relativity TVI TMP-TC1 Problem set 12

Exercise 1 – Vectors, 1-forms, and the metric tensor

(i) A symmetric, non-degenerate bilinear form on the tangent space of a manifold is called a metric. For a given metric g and a vector u, we can define a 1-form ω_u by its action on an arbitrary vector v:

$$\omega_u(v) = g(u, v) . \tag{1}$$

Consider a coordinate basis of vectors $\frac{\partial}{\partial x^{\mu}}$ and 1-forms dx^{μ} . Show that the components of the 1-form ω_u are given by the formula

$$(\omega_u)_\mu = g_{\mu\nu} u^\nu \,, \tag{2}$$

where $g_{\mu\nu}$ are the components of the metric in a given coordinate system.

(ii) Consider the 2-sphere $N = \mathbb{S}^2$ embedded in $M = \mathbb{R}^3$. The coordinates on N and M are denoted as $x^{\mu} = (\theta, \phi)$ and $y^{\mu} = (x, y, z)$ respectively for $\theta \in [0, \pi)$ and $\phi \in [0, 2\pi)$. Then the map $\Phi : N \to M$ is given by

$$\Phi(\theta, \phi) = (\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) .$$
(3)

Find the metric on \mathbb{S}^2 by pulling back the Euclidean metric from \mathbb{R}^3 .

(iii) Now take the vector field defined on the surface N as

$$V = \cos\phi \,\partial_\phi + \sin\phi \,\partial_\theta \tag{4}$$

and check whether it is a unit vector and compute its components in M.

Exercise 2 – Christoffel symbols

(i) Consider the Levi-Civita connection and find the transformation property of the Christoffel symbols Γ under arbitrary coordinate transformations:

$$\tilde{\Gamma}^{\alpha}_{\beta\gamma} = \Gamma^{\mu}_{\rho\sigma} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial x^{\rho}}{\partial \tilde{x}^{\beta}} \frac{\partial x^{\sigma}}{\partial \tilde{x}^{\gamma}} + \frac{\partial^{2} x^{\sigma}}{\partial \tilde{x}^{\beta} \partial \tilde{x}^{\gamma}} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{\sigma}} , \qquad (5)$$

where Γ is the Christoffel symbol in coordinates x and $\tilde{\Gamma}$ in coordinates \tilde{x} . Find a subset of the general coordinate transformations under which the Christoffel symbol transforms like a tensor. What does this tell you about the connection in arbitrary Cartesian coordinates if all Christoffel symbols vanish in a given Cartesian coordinate system?

(ii) The non-vanishing Christoffel symbols of S^2 in the coordinates $x^{\mu} = (\theta, \phi)$ of problem 12.1 have already been computed in Problem Sheet 8, Exercise 3 (in that case for a generic radius R). Compute them once more using Mathematica. You can find Mathematica Notebooks with expressions for calculating the Christoffel symbols and much more at http://web.physics.ucsb.edu/~gravitybook/mathematica. html.

- (iii) Show that in these coordinates the Christoffel symbols fail to describe geodesics going through $\theta = \{0, \pi\}$. Find coordinates in which you can circumvent this problem. Although one obviously cannot cover \mathbb{S}^2 globally by Euclidean coordinates, can you think of a way how this can be introduced in the neighborhood of an arbitrary point on the sphere?
- (iv) Now consider two sets of connection coefficients Γ and $\hat{\Gamma}$. Take their difference

$$\Gamma^{\alpha}_{\beta\gamma} - \tilde{\Gamma}^{\alpha}_{\beta\gamma} \tag{6}$$

and find whether it transforms as a tensor under arbitrary coordinate transformations. What are the consequences?

Exercise 3 – Bending of light

(i) Analogously to problem 11.3 for a massive particle we find the equation of motion for massless particles in the (r, ϕ) plane to be

$$\dot{r}^2 = E^2 - \frac{L^2}{r^2} + \frac{2ML^2}{r^3} \qquad \dot{\phi} = \frac{L}{r^2}$$
(7)

Use these equations to obtain the following differential equation for the orbit:

$$\iota'' + u = 3Mu^2 \tag{8}$$

where $u = \frac{1}{r}$ and $u' = \frac{\mathrm{d}u}{\mathrm{d}\phi}$ by differentiating $\frac{\dot{r}^2}{\dot{\phi}^2}$ once.

(ii) For M = 0 equation (8) is solved by $u = \frac{\sin \phi}{R_0}$ with the smallest radius of light R_0 . Consider a small perturbation around this solution for the case $M \neq 0$ and solve (8). Verify that the gravitational bending of light passing near the sun is

$$\Delta \phi = 1.75'' \frac{R_{\odot}}{R_0} \tag{9}$$

where R_{\odot} is the radius of the sun.

General information

The lecture takes place on Monday at 10:00-12:00 and on Wednesday at 10:00-12:00 in A348.

Presentation of solutions: Thursday at 08:00 - 10:00 in A 348

There are two tutorials: Monday at 12:00 - 14:00 in A 249 Friday at 14:00 - 16:00 in A 348

The webpage for the lecture and exercises can be found at

www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/tvi_tc1_gr/index.html