Exercises on General Relativity TVI TMP-TC1

Problem set 12

Exercise 1 - Vectors, 1-forms, and the metric tensor

(i) A symmetric, non-degenerate bilinear form on the tangent space of a manifold is called a metric. For a given metric g and a vector u, we can define a 1 -form ω_{u} by its action on an arbitrary vector v :

$$
\begin{equation*}
\omega_{u}(v)=g(u, v) \tag{1}
\end{equation*}
$$

Consider a coordinate basis of vectors $\frac{\partial}{\partial x^{\mu}}$ and 1 -forms $\mathrm{d} x^{\mu}$. Show that the components of the 1 -form ω_{u} are given by the formula

$$
\begin{equation*}
\left(\omega_{u}\right)_{\mu}=g_{\mu \nu} u^{\nu} \tag{2}
\end{equation*}
$$

where $g_{\mu \nu}$ are the components of the metric in a given coordinate system.
(ii) Consider the 2-sphere $N=\mathbb{S}^{2}$ embedded in $M=\mathbb{R}^{3}$. The coordinates on N and M are denoted as $x^{\mu}=(\theta, \phi)$ and $y^{\mu}=(x, y, z)$ respectively for $\theta \in[0, \pi)$ and $\phi \in[0,2 \pi)$. Then the map $\Phi: N \rightarrow M$ is given by

$$
\begin{equation*}
\Phi(\theta, \phi)=(\sin \theta \cos \phi, \sin \theta \sin \phi, \cos \theta) . \tag{3}
\end{equation*}
$$

Find the metric on \mathbb{S}^{2} by pulling back the Euclidean metric from \mathbb{R}^{3}.
(iii) Now take the vector field defined on the surface N as

$$
\begin{equation*}
V=\cos \phi \partial_{\phi}+\sin \phi \partial_{\theta} \tag{4}
\end{equation*}
$$

and check whether it is a unit vector and compute its components in M.

Exercise 2 - Christoffel symbols

(i) Consider the Levi-Civita connection and find the transformation property of the Christoffel symbols Γ under arbitrary coordinate transformations:

$$
\begin{equation*}
\tilde{\Gamma}_{\beta \gamma}^{\alpha}=\Gamma_{\rho \sigma}^{\mu} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{\mu}} \frac{\partial x^{\rho}}{\partial \tilde{x}^{\beta}} \frac{\partial x^{\sigma}}{\partial \tilde{x}^{\gamma}}+\frac{\partial^{2} x^{\sigma}}{\partial \tilde{x}^{\beta} \partial \tilde{x}^{\gamma}} \frac{\partial \tilde{x}^{\alpha}}{\partial x^{\sigma}}, \tag{5}
\end{equation*}
$$

where Γ is the Christoffel symbol in coordinates x and $\tilde{\Gamma}$ in coordinates \tilde{x}. Find a subset of the general coordinate transformations under which the Christoffel symbol transforms like a tensor. What does this tell you about the connection in arbitrary Cartesian coordinates if all Christoffel symbols vanish in a given Cartesian coordinate system?
(ii) The non-vanishing Christoffel symbols of \mathbb{S}^{2} in the coordinates $x^{\mu}=(\theta, \phi)$ of problem 12.1 have already been computed in Problem Sheet 8, Exercise 3 (in that case for a generic radius R). Compute them once more using Mathematica. You can find Mathematica Notebooks with expressions for calculating the Christoffel symbols and much more at http://web.physics.ucsb.edu/~gravitybook/mathematica. html.
(iii) Show that in these coordinates the Christoffel symbols fail to describe geodesics going through $\theta=$ $\{0, \pi\}$. Find coordinates in which you can circumvent this problem. Although one obviously cannot cover \mathbb{S}^{2} globally by Euclidean coordinates, can you think of a way how this can be introduced in the neighborhood of an arbitrary point on the sphere?
(iv) Now consider two sets of connection coefficients Γ and $\hat{\Gamma}$. Take their difference

$$
\begin{equation*}
\Gamma_{\beta \gamma}^{\alpha}-\hat{\Gamma}_{\beta \gamma}^{\alpha} \tag{6}
\end{equation*}
$$

and find whether it transforms as a tensor under arbitrary coordinate transformations. What are the consequences?

Exercise 3 - Bending of light

(i) Analogously to problem 11.3 for a massive particle we find the equation of motion for massless particles in the (r, ϕ) plane to be

$$
\begin{equation*}
\dot{r}^{2}=E^{2}-\frac{L^{2}}{r^{2}}+\frac{2 M L^{2}}{r^{3}} \quad \dot{\phi}=\frac{L}{r^{2}} \tag{7}
\end{equation*}
$$

Use these equations to obtain the following differential equation for the orbit:

$$
\begin{equation*}
u^{\prime \prime}+u=3 M u^{2} \tag{8}
\end{equation*}
$$

where $u=\frac{1}{r}$ and $u^{\prime}=\frac{\mathrm{d} u}{\mathrm{~d} \phi}$ by differentiating $\frac{\dot{r}^{2}}{\dot{\phi}^{2}}$ once.
(ii) For $M=0$ equation (8) is solved by $u=\frac{\sin \phi}{R_{0}}$ with the smallest radius of light R_{0}. Consider a small perturbation around this solution for the case $M \neq 0$ and solve (8). Verify that the gravitational bending of light passing near the sun is

$$
\begin{equation*}
\Delta \phi=1.75^{\prime \prime} \frac{R_{\odot}}{R_{0}} \tag{9}
\end{equation*}
$$

where R_{\odot} is the radius of the sun.

General information

The lecture takes place on Monday at 10:00-12:00 and on Wednesday at 10:00-12:00 in A348.
Presentation of solutions:
Thursday at 08:00-10:00 in A 348
There are two tutorials:
Monday at 12:00-14:00 in A 249
Friday at 14:00-16:00 in A 348
The webpage for the lecture and exercises can be found at

