Exercises on General Relativity TVI TMP-TC1

Problem set 10

Exercise 1 - Transformation properties of tensors

(i) Show that $\left\{\partial_{\mu}\right\}$ form a basis of the tangent space and show that they transform like a vector.
(ii) Repeat this analysis with $\left\{\mathrm{d} x^{\mu}\right\}$ and show that they transform like a 1-form.
(iii) Given a tensor T of type (2,2), calculate the function $T(v, w, h, k)$ for arbitrary vectors v and w and arbitrary 1-forms h and k.
(iv) How do the components of the tensor T transform?
(v) It was explicitly shown how the measure of the action of electrodynamics changes when a coordinate transformation is performed. Show that

$$
\begin{equation*}
\int \mathrm{d} \mu:=\int \mathrm{d}^{4} x \sqrt{g} \tag{1}
\end{equation*}
$$

with $g=-\operatorname{det}\left(g_{\mu \nu}\right)$, is invariant under diffeomorphisms by using that the metric transforms as

$$
\begin{equation*}
\tilde{g}_{\mu \nu}=\frac{\partial x^{\alpha}}{\partial \tilde{x}^{\mu}} \frac{\partial x^{\beta}}{\partial \tilde{x}^{\nu}} g_{\alpha \beta} . \tag{2}
\end{equation*}
$$

Exercise 2 - Examples of 1-forms and tensors

(i) Calculate the 1-forms $\mathrm{d} h$ and $\mathrm{d} k$, where

$$
\begin{equation*}
h(x, y, z)=4 x^{2} y+x^{3} z, \quad k(x, y)=\sqrt{x^{2}+y^{2}} . \tag{3}
\end{equation*}
$$

(ii) In 3-dimensional Euclidean space, decide whether the following maps are tensors:

$$
\begin{align*}
T:(v, w) & \mapsto 2 v \times w-v(n \cdot w) \tag{4}\\
S:(v, w) & \mapsto 2 v \times w-(v \cdot v)(n \cdot w) \tag{5}\\
R:(v, w) & \mapsto n \cdot(v \times w)-(n \cdot v)(n \cdot w) \tag{6}
\end{align*}
$$

with $v, w, n \in \operatorname{Vec}\left(\mathbb{R}^{3}\right)$ and n is fixed.
For each $K \in\{T, S, R\}$ for which it is possible determine the components $K^{a}{ }_{b c}$ in a given basis.

Exercise 3 - Commutative properties of vector fields

Consider the Lie bracket of two smooth vector fields X and Y on a manifold M :

$$
\begin{equation*}
[X, Y](f):=X Y(f)-Y X(f) \tag{7}
\end{equation*}
$$

where $f \in C^{\infty}(M)$.
(i) Show that the vector fields fulfil the Jacobi identity:

$$
\begin{equation*}
[[X, Y], Z]+[[Z, X], Y]+[[Y, Z], X]=0 \tag{8}
\end{equation*}
$$

(ii) Furthermore, show

$$
\begin{equation*}
[f X, Y]=f[X, Y]-Y(f) X \tag{9}
\end{equation*}
$$

(iii) Let from now on $M=\mathbb{R}^{n}$. Show that the bracket of the coordinate vector fields $\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}} \in \operatorname{Vec}\left(\mathbb{R}^{n}\right)$ vanishes.
(iv) Show that, for $X, Y \in \operatorname{Vec}\left(\mathbb{R}^{n}\right)$, if

$$
\begin{equation*}
X=\sum_{i=1}^{n} f_{i} \frac{\partial}{\partial x_{i}}, \quad Y=\sum_{j=1}^{n} g_{j} \frac{\partial}{\partial x_{j}} \tag{10}
\end{equation*}
$$

then the bracket is given by

$$
\begin{equation*}
[X, Y]=\sum_{j=1}^{n}\left(\sum_{i=1}^{n}\left(f_{i} \frac{\partial g_{j}}{\partial x_{i}}-g_{i} \frac{\partial f_{j}}{\partial x_{i}}\right)\right) \frac{\partial}{\partial x_{j}} . \tag{11}
\end{equation*}
$$

(v) As an example calculate the bracket of the vector fields $X, Y \in \operatorname{Vec}\left(\mathbb{R}^{2} \backslash\{0\}\right)$ with

$$
\begin{equation*}
X=\frac{x}{r} \frac{\partial}{\partial x}+\frac{y}{r} \frac{\partial}{\partial y}, \quad Y=x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x} \tag{12}
\end{equation*}
$$

where $r:=\sqrt{x^{2}+y^{2}}$.

General information

The lecture takes place on Monday at 10:00-12:00 and on Wednesday at 10:00-12:00 in A348.
Presentation of solutions:
Thursday at 08:00-10:00 in A 348
There are two tutorials:
Monday at 12:00-14:00 in A 249
Friday at 14:00-16:00 in A 348
The webpage for the lecture and exercises can be found at

