Black Holes and their Thermodynamics¹ **Problem Sheet 4**

Prof. Dieter Lüst² and Marvin Lüben³

November 04, 2019

Tutorials take place on Mondays, 2-4pm (c.t.) in room A 449, Theresienstr. 37. Please hand in your solutions at the next tutorial on November 11, 2019 or send them in a single pdf in an email before the tutorial.

Exercise 1 A general, static and spherically symmetric metric in coordinates (t, r, θ, ϕ) can be written as

$$ds^{2} = -A(r)dt^{2} + \frac{1}{B(r)}dr^{2} + r^{2}d\Omega^{2}, \qquad (1)$$

where $d\Omega^2 = d\theta^2 + \sin^2 \theta d\phi^2$ is the metric on a unit 2-sphere. Assume that the A(r) and B(r) are analytic functions of r such that both have a simple zero at $r = r_+ > 0$ and are positive for $r > r_+$.

1. Show that radial null geodesics are given by $t \pm r^* = \text{constant}$, where

$$r^* = \int_{r_0}^r \frac{\mathrm{d}r'}{\sqrt{A(r')B(r')}},$$
(2)

with $r_0 > r_+$ an arbitrary constant. Show that $r^* \to -\infty$ as $r \to r_+$.

2. Ingoing Eddington-Finkelstein coordinates are defined by

$$v = t + r^* \,. \tag{3}$$

Obtain the metric in these coordinates. Explain why this metric can be analytically continued through $r = r_+$.

3. For A(r) = B(r) = 1 - 2M/r the metric in eq. (1) is the Schwarzschild metric. Which describes a black hole of mass M. The Kretschmann invariant is defined by

$$K = R^{abcd} R_{abcd} \tag{4}$$

and given by $K = 48M^2/r^6$ for the spacetime defined by the Schwarzschild metric. Comment on the definitions of spacetime and coordinate singularities.

 $^{^1}$ www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/bh_info_wise_2019_20^2 dieter.luest@lmu.de

³mlueben@mpp.mpg.de

Exercise 2 In this exercise we will show, that the region r < 2M of the Schwarzschild solution indeed describes a black hole. First, let us introduce the following definitions

- A vector is called causal if it is timelike or null. A curve is called causal if its tangent vector is everywhere causal.
- Given a time-orientation of the spacetime: a causal vector field T^a . A vector field X^a is called future-directed if it lies in the same lightcone as T^a .

For the Schwarzschild spacetime let ∂_t denote the time-orientation for r > 2M. Show that every future-directed causal curve starting inside the event horizon r < 2M will not cross the event horizon. The following steps may provide a guideline:

- 1. Argue that $-\partial_r$ is future-oriented causal.
- 2. Let $x^{\mu}(\lambda)$ be a future-directed causal curve. Contract the tangent vector $dx^{\mu}/d\lambda$ with $-\partial_r$ to determine the sign of \dot{v} .
- 3. After these preliminaries, inspect \dot{x}^2 for r < 2M.
- 4. In addition, what can you say about future-directed causal curves that start on the event horizon?

Hint: Work in ingoing Eddington-Finkelstein coordinates from the previous exercise.

Exercise 3 Take the Schwarzschild metric, i.e. set A(r) = B(r) = 1 - 2M/rin eq. (1).

- 1. Write the Lagrangian of the geodesic equation for the Schwarzschild metric. Derive the components of the geodesic equation. Determine the Christoffel symbols from the geodesic equation.
- 2. Note that the Lagrangian from which geodesics are obtained is independent of t and ϕ . What consequences does this have?