Black Holes and their Thermodynamics ${ }^{11}$
 Problem Sheet 3

Prof. Dieter Lüst ${ }^{2}$ and Marvin Lüben ${ }^{3}$ October 28, 2019

Tutorials take place on Mondays, $2-4 \mathrm{pm}$ (c.t.) in room A 449, Theresienstr. 37. Please hand in your solutions at the next tutorial on November 4, 2019 or send them as pdf in an email before the tutorial.

Erratum: Typos in eq. (4) and eq. (13) corrected.
Exercise 1 Let x^{a} be a coordinate system and e_{a} basis vectors. In the lecture we defined the affine connection as

$$
\begin{equation*}
\Gamma_{b c}^{a}=e^{a} \partial_{c} e_{b}, \tag{1}
\end{equation*}
$$

from where we found the components of the covariant derivative of the covariant components of a vector field v as

$$
\begin{equation*}
\nabla_{a} v^{b}=\partial_{a} v^{b}+\Gamma_{c a}^{b} v^{c} \tag{2}
\end{equation*}
$$

1. By differentiating the reciprocity relation $e^{a} e_{b}=\delta_{b}^{a}$, find the derivatives of the dual basis vectors e^{a} with respect to the coordinates, $\partial_{b} e^{a}$, in terms of $\Gamma^{a}{ }_{b c}$ from eq. (1).
2. Next, take a vector field v and expand it in the dual basis, $v=v_{a} e^{a}$, to find the components of the covariant derivative of the contravariant components, $\nabla_{a} v_{b}$, using the definition

$$
\begin{equation*}
\partial_{a} v \equiv\left(\nabla_{a} v_{b}\right) e^{b} \tag{3}
\end{equation*}
$$

(analogously to the lecture).
Exercise 2 Show that a geodesic of spacetime which is timelike (spacelike, null) at one event is timelike (spacelike, null) everywhere.

Exercise 3 The Einstein-Hilbert action in 4 dimensions reads

$$
\begin{equation*}
S_{\mathrm{EH}}=\frac{1}{16 \pi G} \int \mathrm{~d} x^{4} \sqrt{-g}(R-2 \Lambda)+\int \mathrm{d} x^{4} \sqrt{-g} \mathcal{L}_{\text {matter }} \tag{4}
\end{equation*}
$$

where $g=\operatorname{det} g_{\mu \nu}$ is the determinant of the metric tensor $g_{\mu \nu}$ and R is the Ricci scalar. The matter Lagrangian $\mathcal{L}_{\text {matter }}$ contains all other possible matter fields. The energy-momentum tensor is defined by

$$
\begin{equation*}
T_{\mu \nu}=\frac{-2}{\sqrt{-g}} \frac{\partial \sqrt{-g} \mathcal{L}_{\text {matter }}}{\partial g^{\mu \nu}} \tag{5}
\end{equation*}
$$

[^0]1. Calculate the variation of the determinant, $\delta \sqrt{-g}$.
2. Show, that the energy momentum tensor can be written as

$$
\begin{equation*}
T_{\mu \nu}=-2 \frac{\partial \mathcal{L}_{\text {matter }}}{\partial g^{\mu \nu}}+g_{\mu \nu} \mathcal{L}_{\text {matter }} \tag{6}
\end{equation*}
$$

3. Show by variation that the Einstein-Hilbert action yields the Einstein field equations,

$$
\begin{equation*}
G_{\mu \nu}=8 \pi G T_{\mu \nu}-\Lambda g_{\mu \nu} \tag{7}
\end{equation*}
$$

4. The Lagragian of Maxwell's theory is given by

$$
\begin{equation*}
\mathcal{L}_{\text {Maxwell }}=-\frac{1}{4} F^{\mu \nu} F_{\mu \nu} \tag{8}
\end{equation*}
$$

where the field strength tensor $F_{\mu \nu}$ of a vector field A_{μ} is

$$
\begin{equation*}
F_{\mu \nu}=\nabla_{\mu} A_{\nu}-\nabla_{\nu} A_{\mu} . \tag{9}
\end{equation*}
$$

Calculate the stress-energy tensor.
(Hint: Express $F_{\mu \nu}$ in terms of partial derivatives first. Does it depend on the metric?)
Exercise 4 In the Newtonian limit of weak gravitational fields, the metric is given by

$$
\begin{equation*}
\mathrm{d} s^{2}=-(1+2 \phi) \mathrm{d} t^{2}+(1-2 \phi)\left(\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}\right) \tag{10}
\end{equation*}
$$

which we encountered before. The energy-momentum tensor of a perfect fluid is given by

$$
\begin{equation*}
T^{\mu \nu}=(\rho+p) u^{\mu} u^{\nu}-p g^{\mu \nu} \tag{11}
\end{equation*}
$$

with ρ the energy density, p the pressure and u^{μ} the 4 -velocity of the perfect fluid.

Assume that the fluid is moving slowly and that the pressure is small, $p \ll \rho$. Show that the 00 -component of the Einstein field equations from the previous exercise with a non-zero cosmological constant Λ reduces to

$$
\begin{equation*}
\nabla^{2} \phi=4 \pi G \rho-\Lambda \tag{12}
\end{equation*}
$$

where $\nabla^{2}=\delta^{i j} \partial_{i} \partial_{j}$. Hence show that the corresponding Newtonian gravitational potential of a spherically symmetric mass M centered at the origin can be written as

$$
\begin{equation*}
\phi=-\frac{G M}{r}-\frac{\Lambda r^{2}}{6} . \tag{13}
\end{equation*}
$$

Discuss the difference to the Newtonian gravitational potential.
Plug in the gravitational potential into g_{00} and set $\Lambda=0$. What can you say about the sign of g_{00} for different values of r ?

[^0]: ${ }^{1}$ www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/bh_info_wise_2019_20
 ${ }^{2}$ dieter.luest@lmu.de
 ${ }^{3}$ mlueben@mpp.mpg.de

