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Black Holes and their Thermodynamics1

Problem Sheet 11
Prof. Dieter Lüst2 and Marvin Lüben3

January 13, 2019

Tutorials take place on Mondays, 2-4pm (c.t.) in room A 449, Theresien-
str. 37. There will be no tutorials on January 13 and 20. Please hand in
your solutions at the next tutorial on January 27, 2020 or send them in a
single pdf in an email before the tutorial.

Exercise 1 Consider a massless scalar field in 1+1-dimensional Minkowski
spacetime. The standard mode expansion for the field operator in light-cone
coordinates (u, v) is given by

φ̂ =

∫ ∞
0

dω√
2π

1√
2ω

(
â−ω e

−iωu + â+
ω e

iωu
)

+ (left moving) (1)

with the creation and annihilation operators â+
ω and â−ω , resp. Starting from

Rindler coordinates, and defining light-cone coordinates (ũ, ṽ) from there, the
standard mode expansion can also be written

φ̂ =

∫ ∞
0

dΩ√
2π

1√
2Ω

(
b̂−Ωe

−iΩũ + b̂+
Ωe

iΩũ
)

+ (left moving) (2)

with the creation and annihilation operators b̂+
Ω and b̂−Ω, resp. The operators

enjoy the following commutation relations

[â−ω , â
+
ω′ ] = δ(ω − ω′) , [b̂−Ω, b̂

+
Ω′ ] = δ(Ω− Ω′) . (3)

1. Show that the creation and annihilation operators â±ω and b±Ω′ are related
by a Bogoliubov transformation of the form

b̂−Ω =

∫ ∞
0

dω
(
αΩωâ

−
ω − βΩωâ

+
ω

)
(4)

such that ∫ ∞
0

dω (αΩωα
∗
Ω′ω − βΩωβ

∗
Ω′ω) = δ(Ω− Ω′) (5)

Derive expressions for the matrices αΩω and βΩω. Comment on invert-
ibility of this transformation.

1 www.physik.uni−muenchen.de/lehre/vorlesungen/wise−19−20/bh−info−wise−2019−20
2dieter.luest@lmu.de
3mlueben@mpp.mpg.de

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/bh_info_wise_2019_20/


Black Holes and their thermodynamics WS 2019/20

2. Using your previous result, show that

|αΩω|2 = e
2πΩ
a |βΩω|2 (6)

3. Compute the expectation value of the b-particle number operator N̂Ω =
b̂+

Ω b̂
−
Ω in the Minkowski vacuum |0M〉 defined by â−ω |0M〉 = 0. Verify

that the particle density nΩ is given by

nΩ =
1

e
2πΩ
a − 1

(7)

and read off the temperature associated with this Bose-Einstein distri-
bution. What is a?

4. Compare the mode expansion of a scalar field in Kruskal and Eddington-
Finkelstein coordinates and use the previous results to show that Hawk-
ing radiation is analogoues to the Unruh effect with a = κ.

Exercise 2 Make a proposal for a Penrose diagram of an evaporating Schwarzschild
black hole. Use it to explain the information loss paradox.

Exercise 3 The classical area theorem due to Hawking (1972) states that
the surface area A of a black hole does not decrease in time, dA/dt ≥ 0.
However, Hawking radiation reduces the area of a black hole violating the
second law of black hole mechanics.

Hawking’s area theorem holds assuming the null energy condition (NEC).
It states that null observers only see non-negative energy densities

Tkk = Tabk
akb ≥ 0 ∀ k2 = 0 , (8)

where Tab is the energy-momentum tensor and ka is a null vector. However,
quantum states, such as Hawking radiation, violate the NEC.

In this exercise we will familiarize ourselves with a possible resolution.
The starting point is to define a generalized or quantum corrected entropy

Sgen = SBH + Sout , (9)

where SBH = A
4G~ is the classical black hole entropy. The other term is the

entropy of the region outside the black hole and given by the von Neumann
entropy Sout = −Trρ ln ρ of the quantum state ρ. On this basis, already
Bekenstein proposed the Generalized Second Law (GSL)

dSgen ≥ 0 , (10)
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in order to incorporate the entropy of matter that falls into the black hole and
not violate the Second Law of Thermodynamics outside the black hole.

The first step is to define a quantum expansion Θ. Let us first introduce
the expansion θ in classical general relativity. Take a congruence of null
geodesics. Let A be an area element orthogonal to the congruence. Then the
expansion is given by

θ =
A′

A
(11)

where A′ is the derivative of the area w.r.t. the affine parameter of the the null
congruence. I.e. θ measures the change of the area along the null congruence
normalized to the area.

To define the quantum expansion take a hypersurface Σ, e.g. the surface of
a black hole, and deform it by an infinitesimal amount A along a orthogonal
direction. Then we define

Θ = lim
A→0

4G~
A

S ′gen (12)

where S ′gen denotes derivative w.r.t. the localized deformation of the surface
(we will use this highly simplified notation in the following. It really repre-
sents directional functional derivatives.).

Classically, the NEC implies that θ′ ≤ 0 (Why?), which is referred to as
focussing theorem. It means that light rays can only be focussed and never
anti-focussed if the NEC is satisfied. This motivates the following Quantum
Focussing Conjecture (QFC)

Θ′ ≤ 0 . (13)

The QFC is the basis for several interesting results in quantum gravity.

1. Convince yourself that the quantum expansion can be written as

Θ = θ + lim
A→0

4G~
A

S ′out . (14)

2. Show that the derivative of the quantum expansion w.r.t. the localized
deformation of the surface is given by

Θ′ = θ′ + lim
A→0

4G~
A

(S ′′out − S ′outθ) . (15)
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3. By using Raychauduri’s equation and choosing an appropriate null con-
gruence with tangent vector ka show that the QFC implies

〈Tkk〉 ≥ lim
A→0

~
2πA

S ′′out . (16)

This inequality is referred to as quantum null energy condition (QNEC).

A large class of (bosonic) QFTs, free and interacting, are proven to satisfy
the QNEC. However, these proofs are non-trivial. Note that the dependence
on Newton’s constant G dropped out in this expression.

4. Now take a black hole. Give an argument on why one can expect that
Θ → 0 in the asymptotic future. With this assumption, use the QFC
to deduce the GSL.

Hints: It might be instructive to read the pedagogical paper arXiv:1810.01880
and go through parts of the technical paper arXiv:1506.02669.

https://arxiv.org/abs/1810.01880
https://arxiv.org/abs/1506.02669

