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Black Holes and their Thermodynamics1

Problem Sheet 10
Prof. Dieter Lüst2 and Marvin Lüben3

December 16, 2019

Tutorials take place on Mondays, 2-4pm (c.t.) in room A 449, There-
sienstr. 37. There will be no tutorial on December 23. Please hand in your
solutions at the next tutorial on January 10, 2020 or send them in a single
pdf in an email before the tutorial. Note the unusual date and time.

Exercise 1 The Kerr-Newman black hole with electrical charge Q is given
by

ds2 = −ρ
2∆

Σ
dt2 +

Σ

ρ2
sin2 θ (dφ− ωdt)2 +

ρ2

∆
dr2 + ρ2dθ2 (1)

At =
Qr

ρ2
, Aφ = −Qar sin2 θ

ρ2
(2)

where

∆ = r2 − 2Mr + a2 +Q2 , ρ2 = r2 + a2 cos2 θ , (3)

Σ = (r2 + a2)2 − a2∆ sin2 θ , ω =
(2Mr −Q2)a

Σ
(4)

1. The co-rotating electric horizon potential is defined by

ΦH = ξµAµ

∣∣∣
r=r+

,with ξ = ∂t + ΩH∂φ , (5)

where ΩH = a
r2++a2

. Here we assume that M2 > a2 + Q2 and r+ is

the radial position of the outer horizon of the Kerr-Newman black hole.
Determine r+. Show that

ΦH =
Qr+

r2
+ + a2

(6)

2. Convince yourself that the area of the (outer) event horizon is still given
by A = 4π(r2

+ + a2) and verify Smarr’s formula

M =
κA

4π
+ 2ΩHJ + ΦHQ , (7)

where κ = r+−r−
2(r2++a2)

is the surface gravity of the outer event horizon.
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3. Use this formula for M to deduce the first law of black hole mechanics
for charged rotating black holes:

dM = κdA+ ΩHdJ + ΦHdQ . (8)

Exercise 2 In this exercise we will study implications of Hawking’s area
theorem.

1. The area law implies a limit to the efficiency of mass/energy conversion
in black hole collisions. Consider two black holes that initially are well
separated so that we can approximate them as Schwarzschild black holes
(i.e. uncharged and non-rotating) of masses M1 and M2, respectively.
Assume further that the final black hole is again a Schwarzschild black
hole of mass M3. The energy difference E = M1 +M2−M3 is radiated
away by gravitational radiation. Use the black hole area law to show

η ≡ E

M1 +M2

≤ 1− 1√
2

(9)

for the efficiency of the process.

2. Assuming the area law show that a Schwarzschild black hole of mass
M3 can never bifurcate into two Schwarzschild black holes of masses
M1 and M2, respectively.

Exercise 3 Identifying the surface gravity κ of the (outer) event horizon
with the temperature of a black hole via

T =
~
2π
κ (10)

leads to a negative heat capacity for a Schwarzschild black hole (Check this!),
i.e. the temperature decreases with increasing mass. Plot T/~ as a function
of M/Q for a Reissner-Nordström black hole for a fixed charge Q, and discuss
the heat capacity in that case.

(Hint: The heat capacity of a charged black hole of mass M and fixed
charge Q is C = T ∂S

∂T
|Q where S = A/4~ is the Bekenstein-Hawking entropy

of the black hole.)

Exercise 4 Consider the Klein-Gordon equation of a massive, complex scalar
field in Minkowski spacetime,

(∇2 −m2)φ = 0 . (11)
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1. Show that the inner product on the space of solutions to the Klein-
Gordon equation, i.e.

〈φ1, φ2〉 = −i
∫

Σt

dD−1x(φ1∂tφ
∗
2 − φ∗

2∂tφ1) (12)

is independent of the constant-time hypersurface Σt over which the in-
tegral is taken.

2. Use the inner product (11) to show

〈f~k1 , f~k2〉 = −〈f ∗
~k1
, f ∗
~k2
〉 = δD−1(~k1 − ~k2) , 〈f~k1 , f

∗
~k2
〉 = 0 , (13)

with

f~k =
eikµx

µ√
(2π)D−12ω

, ω2 = ~k2 +m2 , ω > 0 (14)

3. Argue that the vacuum state does not change under a Lorentz transfor-
mation.


