Black Holes and their Thermodynamics ${ }^{11}$
 Problem Sheet 1

Prof. Dieter Lüst ${ }^{2}$ and Marvin Lüben ${ }^{3}$ October 14, 2019
Tutorials take place on Mondays, $2-4 \mathrm{pm}$ (c.t.) in room A 449, Theresienstr. 37. Please hand in your solutions at the next tutorial on October 21, 2019.

Exercise 1 The line element of Minkowski space in inertial coordinates (t, x, y, z) is given by

$$
\begin{equation*}
\mathrm{d} s^{2}=-\mathrm{d} t^{2}+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2} . \tag{1}
\end{equation*}
$$

1. Calculate the line element in spherical coordinates (t, r, θ, ϕ) defined by

$$
\begin{equation*}
r^{2}=x^{2}+y^{2}+z^{2}, \quad \cos \theta=\frac{z}{r}, \quad \tan \phi=\frac{y}{x} \tag{2}
\end{equation*}
$$

Also compute the components of the inverse metric.
2. Take the line element

$$
\begin{equation*}
\mathrm{d} s^{2}=\left(a^{2} t^{2}-c^{2}\right) \mathrm{d} t^{2}+2 a t \mathrm{~d} t \mathrm{~d} x+\mathrm{d} x^{2}+\mathrm{d} y^{2}+\mathrm{d} z^{2}, \tag{3}
\end{equation*}
$$

where a and c are constants. Calculate the components of the inverse metric. By identify a suitable coordinate transformation, show that the line element can be reduced to the Minkowski line element.

Exercise 2 Consider the 2-sphere S^{2} with line element

$$
\begin{equation*}
\mathrm{d} s^{2}=r^{2}\left(\mathrm{~d} \theta^{2}+\sin ^{2} \theta \mathrm{~d} \phi^{2}\right), \tag{4}
\end{equation*}
$$

where r is constant and the coordinates are (θ, ϕ).

1. Please calculate the Riemann-tensor, Ricci-tensor, and Ricci-scalar. Also calculate the Einstein tensor and give a physical interpretation for your result.
2. For a circle of diameter d on S^{2}, calculate its circumference C. Caluclate the ratio of the circumference C and the diameter d,

$$
\begin{equation*}
c=\frac{C}{d} . \tag{5}
\end{equation*}
$$

What is c in Euclidean space?

[^0]3. Extra: Now let $g_{a b}$ be the metric of an arbitrary two-dimensional manifold \mathcal{M}. Show that the Riemann tensor can be written as
\[

$$
\begin{equation*}
R_{a b c d}=K\left(g_{a c} g_{b d}-g_{a d} g_{b c}\right) \tag{6}
\end{equation*}
$$

\]

for some scalar function K. Determine K. What are the components of the Einstein tensor? Give a physical interpretation of your result.
Hint: Use the symmetries of the Riemann tensor ($R_{a b c d}=-R_{a b d c}=$ $\left.-R_{\text {bacd }}\right)$ to count the number of independent components. Then show, that the tensor given in eq. (6) satisfies all symmetry relations of the Riemann tensor. To find K, calculate the Ricci scalar from eq. (6).

Exercise 3 On a generic curved manifold, free particles travel along geodesics. Consider the Lagrangian of the geodesic equation

$$
\begin{equation*}
\mathcal{L}=-g_{\mu \nu} \frac{\mathrm{d} x^{\mu}}{\mathrm{d} \tau} \frac{\mathrm{~d} x^{\nu}}{\mathrm{d} \tau} \tag{7}
\end{equation*}
$$

for a timelike $\mathrm{d} x^{\mu} / \mathrm{d} \tau$, where τ is the proper time along the geodesic. Derive the geodesic equation from the Lagrangian through variation.

In the Newtonian limit, the metric can be written as

$$
\begin{equation*}
\mathrm{d} s^{2}=-(1+2 \Phi) \mathrm{d} t^{2}+(1-2 \Phi) \delta_{i j} \mathrm{~d} x^{i} \mathrm{~d} x^{j} \tag{8}
\end{equation*}
$$

where x^{i} are the spatial coordinates and $\delta_{i j}$ is the Kronecker symbol and $\Phi=\Phi\left(x^{i}\right)$ depends only on the spatial directions. Assuming small velocities and $|\Phi| \ll 1$, show that the geodesic equation reduces the the Newtonian equation of motion for a particle moving in an external gravitational field.

[^0]: ${ }^{1}$ www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/bh_info_wise_2019_20
 ${ }^{2}$ dieter.luest@lmu.de
 ${ }^{3}$ mlueben@mpp.mpg.de

