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Exercise 37
Consider the transition amplitude for a free particle in the path integral representation,

K(xf , xi;T ) =

∫
{
x(T )=xf

x(0)=xi

Dx exp
(
i

~
S[x(t)]

)
(1)

Why does Dx = Dy hold for a transformation of x(t) according to x(t) = xclass.(t) + y(t), where y(t) is
arbitrary?

Solution The integration measure is defined as

Dx = limN→∞
1√

2πi~m−14t0

N∏
k=1

dxk√
2πi~m−14tk

(2)

We can regard the multiple integrations dxk as a multidimensional integral. Upon a change of variables
xi → xclass,i + yi, where xclass,i is a constant, the integration measure changes by a factor according to the
determinant of the Jacobian matrix.

Dx = Dy detJ , Jij =
∂xi
∂yj

(3)

But for our transformation, the Jacobian is just the identity, so the determinant is 1 and the measure does
not change.

Exercise 38 (Central Tutorial)
In the lecture it was shown that, by using the transformation from Exercise 37, the transition amplitude for
a free particle can be approximated as

K(xf , xi;T ) = F (T ) exp
(
i

~
S[xclass]

)
, (4)

where F (T ) is an undetermined function of T = tf − ti. Check by direct calculation that

F (T ) =

∫ y(tf )=0

y(ti)=0

Dy exp
(
i

~
m

2

∫ T

0

ẏ2

)
=
( m

2πi~T

) 1
2 (5)

Hint: The following integral might be useful:∫
dx exp

[
−ax

2

2
+ ibx

]
=

√
2π

a
exp

[
− b2

2a

]
(6)



Solution For the propagator we have

K(xf , xi;T ) =

∫ xf

xi

Dx exp
[
i

~

∫ T

0

dt
mẋ2

2

]
(7)

and the total propagator is then calculated by the integrals over the intermediate points. As we showed
in Exercise 38, the integration measure does not change, so we can concentrate on the integrand. Our
transformation is xi → xclass,i + yi so we get

K(xf , xi;T ) =

∫ yf

yi

Dy exp
[
i

~

∫ T

0

dt
m

2
(ẋclass + ẏ)2

]
(8)

Evaluating the integral gives∫ T

0

dt
m

2
(ẋclass + ẏ)2 =

∫ T

0

dt
m

2
ẋ2class +

∫ T

0

dt mẋclassẏ +

∫ T

0

dt
m

2
ẏ2 = S[xclass] + S[y] (9)

where we did a partial integration on the second term and used the fact that xclass satisfies the classical
equations of motion, i.e. ẍclass = 0 and that y(0) = y(T ) = 0. This gives the function F (T ) as

F (T ) =

∫ y(tf )=0

y(ti)=0

Dy exp
(
i

~
m

2

∫ T

0

ẏ2

)
(10)

To calculate this function we write the integration measure explicitly to get

F (T ) = limN→∞

∫
1√

2πi~m−14t0

(
N∏

k=1

dyk√
2πi~m−14tk

)
exp

[
i

~
m

2

N∑
k=0

(
(yk+1 − yk)

2

4tk

)]
. (11)

Now performing one of the integrals (for 1 ≤ k ≤ N) gives

∫
dykK(yk+1, yk;4tk)K(yk, yk−1;4tk−1) =

=

∫
dyk

m

2πi~
√
4tk4tk−1

exp
[
i

~
m

2

(
(yk+1 − yk)

2

4tk
− (yk − yk−1)

2

4tk−1

)]
=

=
m

2πi~
√
4tk4tk−1

exp
[
i

~
m

2

1

4tk4tk−1

(
y2k+14tk−1 + y2k−14tk

)]
×

×
∫
dyk exp

[
i

~
m

2

1

4tk4tk−1

(
y2k(4tk +4tk−1)− 2yk(yk+14tk−1 + yk−14tk)

)]
Now using the formula for the gaussian integral (6), we can evaluate the integral and get

∫
dykK(yk+1, yk;4tk)K(yk, yk−1;4tk−1) =

=

√
m

2πi~(4tk +4tk−1)
exp

[
i

~
m

2

(yk+1 − yk−1)
2

4tk +4tk−1

]
=

= K(yk+1, yk−1;4tk +4tk−1)

In this manner we can integrate over all intermediate points to get

K(yf , yi;T ) =

√
m

2πi~T
exp

[
i

~
m

2

(yf − yi)
2

T

]
. (12)

But in this case yf = yi = 0, so

F (T ) =

√
m

2πi~T
. (13)



Exercise 39 (Central Tutorial)
Consider the path integral with Hamiltonian Ĥ = q̂p̂2q̂. Derive the measure for the Lagrangian path integral.
Hints: 1) Follow the derivation of the path integral for Ĥ = p̂2 + V (q̂). The integration measure is explicitly
dependent on q(t). 2) The integral (6) might be useful.

Solution The propagator is defined as

K(qf , qi; tf , t0) = 〈qf | Û(tf , t0) | q0〉 (14)

After introducingN intermediate points and inserting identities we can write it as the product of intermediate
propagators

K(qf , qi; tf , t0) =

∫
dqNdqN−1...dq1

(
N∏

k=0

K(qk+1, qk; tk+1, tk)

)
(15)

Now by expanding the operator Û in the definition of the propagator, each intermediate propagator can be
expressed in terms of the momenta and positions.

K(qk+1, qk; tk+1, tk) =

∫
dpk
2π~

exp
[
i4tk
~

(
pk
qk+1 − qk

4tk
−H(pk, qk)

)]
(16)

Here Ĥ has to be in canonical form, i.e. all q̂ to the right of the p̂.

Aside: The above paragraphs are properly explained in the lecture, following pages 132-136 in CSQFT V.
Mukhanov’s book. Now the required computation begins.

For our Hamiltonian Ĥ = q̂p̂2q̂ = p̂2q̂2 + 2i~p̂q̂, as checked in Exercise 31. Then the propagator is

K(qk+1, qk; tk+1, tk) =

∫
dpk
2π~

exp
[
i4tk
~

(
pk
qk+1 − qk

4tk
− p2kq

2
k − 2i~pkqk

)]
(17)

The gaussian integral can be evaluated using (6). In our case this yields the result

K(qk+1, qk; tk+1, tk) =
1

2qk
√
iπ~4tk

exp
[
− ~
4iq2k4tk

(
qk+1 − qk

~
− 2iqk4tk

)2
]
. (18)

As we have N such terms we get a sum in the exponent.

K(qf , q0; tf , t0) =

∫ [ N∏
k=1

dqk
1

2qk
√
iπ~4tk

]
1

2q0
√
iπ~4t0

exp
[
−

N∑
k=0

~
4iq2k4tk

(
qk+1 − qk

~
− 2iqk4tk

)2
]

(19)
In the limit N → ∞ we can replace qk+1 − qk = q̇4tk and the sum by an integral over t.

K(qf , q0; tf , t0) = limN→∞

∫ [ N∏
k=1

dqk
1

2qk
√
iπ~4tk

]
1

2q0
√
iπ~4t0

exp
[
i

~

∫
dt

1

4q2
(q̇ − 2i~q)2

]
(20)

Partial integration with d
dt ln q = q̇

q gives us a total factor of qf
q0

and we obtain

K(qf , q0; tf , t0) = limN→∞

∫ [ N∏
k=1

dqk
1

2qk
√
iπ~4tk

]
1

2q0
√
iπ~4t0

qf
q0

exp
[
i

~

∫
dt

(
q̇2

4q2
− ~2

)]
. (21)

We can rewrite this using the integration measure

Dq ≡ limN→∞
1

2q0
√
iπ~4t0

qf
q0

N∏
k=1

dqk
1

2qk
√
iπ~4tk

(22)

which is explicitly dependent on q (compare with (2)).



Exercise 40
Show that for analytic operators Â(p̂, q̂) the following holds:

dÂ

dt
= − i

~
[Â, Ĥ] (23)

Remark: Generally we have dÂ
dt 6= ∂Â

∂q̂
˙̂q + ∂Â

∂p̂
˙̂p.

Solution 〈
ψ

∣∣∣∣∣dÂ(p(t), q(t))dt

∣∣∣∣∣ψ
〉

H

=

〈
∂ψ(t)

∂t

∣∣∣Â∣∣∣ψ(t)〉
S

+

〈
ψ(t)

∣∣∣Â∣∣∣ ∂ψ(t)
∂t

〉
S

= − 1

i~
〈ψ(t) | ĤÂ |ψ(t)〉S +

1

i~
〈ψ(t) | ÂĤ |ψ(t)〉S

= − i

~
〈ψ | [Â, Ĥ] |ψ〉H

Therefore we have
dÂ

dt
= − i

~
[Â, Ĥ] (24)

An alternative proof comes directly from the definition of the operator in Heisenberg picture

Â(H)(t) = Û†(t)Â(S)Û(t) . (25)

Then

d

dt
Â(H)(t) =

∂Û†(t)

∂t
Â(S)Û(t) + Û†(t)Â(S) ∂Û(t)

∂t

=
i

~
Û(t)†ĤÛ(t)Û(t)†Â(S)Û(t)− i

~
Û†(t)Â(S)Û(t)Û(t)†ĤÛ(t)

= − i

~
[Â(H), Ĥ]

(26)

Exercise 41
Consider a Hamiltonian of the form

Ĥ = Ĥ0 + V̂ (t), (27)

where Ĥ0 describes the free part of the system and V̂ (t) describes interactions. In the interaction picture we
consider the time evolution of operators according to the free part of the Hamiltonian, Û0(t) = exp

(
− i

~Ĥ0t
)

,

satisfying ∂Û0

∂t = − i
~Ĥ0Û0.

(i) How is a state |φ(t)〉I defined in the interaction picture?

(ii) Show that |φ(t)〉I satisfies

i~
∂

∂t
|φ(t)〉I = V̂I(t) |φ(t)〉I , (28)

where V̂I(t) = Û†
0 V̂ (t)Û0.

(iii) Take |φ(t)〉I = ÛV (t) |φ0〉, and making use of your result of (ii), find the differential equation, satisfied
by ÛV . Solve this equation iteratively and use it to express |φ(t)〉I only in terms of V̂ (t) and |φ0〉.



Solution Notation: Subscripts S,H, I refer to the Schrödinger, Heisenberg and interaction picture, respec-
tively.

(i) Defining
ÛV (t) = Û†

0 Û = e
i
~ Ĥ0tÛ ,

where Û(t) satisfies ∂Û
∂t = − i

~ (Ĥ0 + V̂ )Û the expectation value of a general operator is

〈Â〉 =
〈
φ0

∣∣∣ Û†
V Û

†
0 ÂSÛ0ÛV

∣∣∣φ0〉 =
〈
φ(t)

∣∣∣ ÂI(t)
∣∣∣φ(t)〉

I
,

where ÂI(t) = Û†
0 ÂSÛ0 and

|φ(t)〉I = ÛV |φ0〉 = e
i
~ Ĥ0t |φ(t)〉S . (29)

(ii) By substituting Eq. 29,

i~
∂

∂t
|φ(t)〉I = i~

∂

∂t
Û†
0 Û |φ0〉 = i~

∂

∂t

(
e

i
~ Ĥ0tÛ

)
|φ0〉

= −Û†
0 Ĥ0Û |φ0〉+ Û†

0 (Ĥ0 + V̂ (t))Û |φ0〉

= Û†
0 V̂ (t)Û0 Û

†
0 Û |φ0〉

= V̂I(t) |φ(t)〉I .

(iii) From the above calculation we also see

∂

∂t
ÛV = − i

~
V̂I(t)ÛV .

Solving this expression iteratively, we find

ÛV (t) = 1 − i

~

∫ t

0

dt V̂ (t1)ÛV (t1)

= 1 +
i

~

∫ t

0

dt V̂ (t1) +

(
− i

~

)2 ∫ t

0

dt1

∫ t1

0

dt2 V̂ (t1)V̂ (t2) + . . .

Therefore we have

|φ(t)〉I = ÛV (t) |φ0〉

=

[ ∞∑
n=0

(
− i

~

)n ∫ t

0

dt1

∫ t1

0

dt2· · ·
∫ tn−1

0

dtn V̂ (t1)V̂ (t2) . . . V̂ (tn)

]
|φ0〉 .

Exercise 42
Evaluate directly the matrix elements of the evolution operator

K(xf , xi; tf , ti) = 〈xf | e−
i
~ Ĥ(tf−ti) |xi〉

where Ĥ = p̂2

2m is the Hamiltonian of the free particle. How would the result change in d space dimensions?

Solution We insert one decomposition of the identity between 〈xf | and the evolution operator,

K(xf , xi; tf , ti) =

∫
dp 〈xf | p〉 e−

i
~

p2

2m (tf−ti) 〈p |xi〉 (30)

=

∫
dp

1√
2π~

e
i
~pxf e−

i
~

p2

2m (tf−ti)
1√
2π~

e−
i
~pxi (31)

This is of the form of the Gaussian integral (6) with

a =
i(tf − ti)

~m
, b =

xf − xi
~

(32)



so we can write it as
K(xf , xi; tf , ti) =

√
m

2πi~(tf − ti)
exp

[
im(xf − xi)

2

2~(tf − ti)

]
. (33)

In d space dimensions all the Gaussian integrals would just factorize so we would find a dth power of the
result, i.e.

K(~xf , ~xi; tf , ti) =

(
m

2πi~(tf − ti)

) d
2

exp

[
im(~xf − ~xi)

2

2~(tf − ti)

]
. (34)


