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Exercise 31
(i) Calculate q̂p̂2q̂ − p̂q̂2p̂.

(ii) Write the Hamiltonian Ĥ = q̂p̂2q̂ in canonical form, which corresponds to moving p̂ operators to the
left of q̂.

Solution

(i) Using the commutator [q̂, p̂] = i~

q̂p̂2q̂ − p̂q̂2p̂ = [q̂, p̂] p̂q̂ + p̂q̂p̂q̂ − p̂q̂ [q̂, p̂]− p̂q̂p̂q̂ = 0.

(ii) Moving p̂ to the left sequentially,

Ĥ = q̂p̂2q̂

= [q̂, p̂] p̂q̂ + p̂q̂p̂q̂

= i~p̂q̂ + p̂ [q̂, p̂] q̂ + p̂2q̂2

= 2i~p̂q̂ + p̂2q̂2.

Exercise 32 (Central tutorial)
Consider the action

S =

∫ tf

ti

dt (pq̇ −H(p, q)), (1)

and treat q(t) and p(t) as independent variables.

(i) Derive the Hamilton equations of motions from the variation of the action. What are the required
boundary conditions on the variation δq and δp?

(ii) Show that if the Hamiltonian is not explicitly time dependent, i.e. H(p, q, t) = H(p, q), then dH
dt = 0.

Solution

(i) By the variational Principle we require δS = 0,

δS = δ

∫ tf

ti

dt (pq̇ −H(p, q))

=

∫ tf

ti

dt

(
δp

dq

dt
+ pδ

dq

dt
− ∂H

∂p
δp− ∂H

∂q
δq

)
=

∫ tf

ti

dt

[(
dq

dt
− ∂H

∂p

)
δp+ p

dδq

dt
− ∂H

∂q
δq

]
=

∫ tf

ti

dt

[(
dq

dt
− ∂H

∂p

)
δp−

(
dp

dt
+
∂H

∂q

)
δq

]
+ [pδq]

tf
ti
,



where we used that δ ∂q∂t = ∂δq
∂t , integrated by parts in the last step and used that the variation of

q should satisfy the boundary conditions δq(ti) = δq(tf ) = 0, to make the boundary term vanish.
Enforcing the boundary conditions and the constraint δS = 0, we can read off Hamilton’s equations as

dq

dt
=
∂H

∂p
and

dp

dt
= −∂H

∂q
. (2)

(ii) By the chain rule and substituting Eq. 2,

dH

dt
=
∂H

∂p

dp

dt
+
∂H

∂q

dq

dt

= −∂H
∂p

∂H

∂q
+
∂H

∂q

∂H

∂p

= 0.

Exercise 33 (Central tutorial)
(i) Generalise the Hamiltonian equations of motion to systems with N degrees of freedom pi and qi,

i = 1, . . . , N .

We now move to the field theory case where we have N → ∞. The generalised coordinates become
qi(t)→ φx(t) = φ(t,x) and pi(t)→ πx(t) = π(t,x), where φ(t,x) is the scalar field and π(t,x) is the ca-
nonical momentum.

(ii) Consider the action of a massless and free scalar field φ = φ(t,x) in 4 dimensions,

S[φ, ∂µφ] =
1

2

∫
d4x ∂µφ∂

µφ =
1

2

∫
dt d3x

[
(∂tφ)2 − (∇φ)2

]
, (3)

where the summation over a Greek index runs over all dimensions µ = 1, . . . , 4, and ∂0 = ∂t, ∂1 = ∂x,
etc.. (By convention summation over Roman indices runs over spatial dimensions i = 1, 2, 3 only, i.e.
(∇φ)2 = −∂iφ∂iφ.)
a) Use the Lagrangian density L, where

S =

∫
dt L =

∫
d4x L

to find the canonical momenta π(t,x).

b) Find the Hamiltonian H(φ, π).

c) Derive the Lagrange equation of motion.

d) Derive Hamilton’s equations of motion.

Solution

(i) The action for a system with N degrees of freedom is

S =

∫ tf

ti

dt
∑
i

(piq̇i −H(pi, qi))

=
∑
i

∫ tf

ti

dt (piq̇i −H(pi, qi)),

where we assumed that we can exchange the sum and the integral. By taking the variation δS = 0,
we can proceed exactly like in the derivation of Eq. 2 and find,

dqi
dt

=
∂H

∂pi
and

dpi
dt

= −∂H
∂qi

. (4)



(ii) a) Simply by reading off, we find

L(φ, ∂µφ) =
1

2
∂µφ∂

µφ.

Hence for the canonical momentum we find

π =
∂L

∂(∂tφ)
= ∂tφ.

b) By performing a Legendre transform,

H(φ, π, ∂iφ) :=

∫
d3x [π∂tφ− L] =

1

2

∫
d3x

[
π2 + (∇φ)2

]
=

∫
d3x H(φ, π, ∂iφ)

c) Using the least action principle, as in Question 32,

δS =

∫
d4x δL[φ, ∂µφ]

=

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
=

∫
d4x

[
∂L
∂φ

δφ+ ∂µ

(
∂L

∂(∂µφ)
δφ

)
− ∂µ

(
∂L

∂(∂µφ)

)
δφ

]
=

∫
d4x

[
∂L
∂φ

δφ− ∂µ
(

∂L
∂(∂µφ)

)
δφ

]
+

∫
d4x ∂µ

[
∂L

∂(∂µφ)
δφ

]
,

where the last term is a total differential integrated over the volume of 4 dimensional spacetime,
which is equal to a surface integral over the boundary of spacetime. On this boundary, we require
δφ = 0, as in the 1 dimensional case. Therefore the last term in the above result is equal to zero.
Hence we find the Lagrange equation

∂L
∂φ

= ∂µ
∂L

∂(∂µφ)
. (5)

Substituting the above Lagrangian, we find the Lagrange equation of motion

∂µ∂
µφ = (∂2t −∆)φ = 0. (6)

d) We can derive the Hamilton equations in a similar fashion,

δS = δ

∫
d4x [π ∂tφ−H(φ, π, ∂iφ)]

=

∫
d4x

[
δπ ∂tφ+ πδ(∂tφ)− ∂H

∂φ
δφ− ∂H

∂π
δπ − ∂H

∂(∂iφ)
δ∂iφ

]
=

∫
d4x

[(
∂tφ−

∂H
∂π

)
δπ −

(
∂tπ +

∂H
∂φ
− ∂i

∂H
∂(∂iφ)

)
δφ

]
−
∫
d4x ∂i

[
∂H

∂(∂iφ)
δφ

]
,

where the last term is again zero due to the same arguments as above. Therefore the Hamilton
equations are

∂tφ =
∂H
∂π

and ∂tπ = −∂H
∂φ

+ ∂i
∂H

∂(∂iφ)
, (7)

giving the same result as in Eq. 6.

Exercise 34
Prove that:

[p̂, p̂nq̂m] = −i~ ∂
∂q̂

(p̂nq̂m) (8)

Solution
[p̂, p̂nq̂m] = p̂n(p̂q̂m − q̂mp̂) = p̂n[p̂, q̂m]

ex.22
= −im~p̂nq̂m−1 = −i~ ∂

∂q̂
(p̂nq̂m) (9)



Exercise 35
Does the hermiticity of Ĥ follow from the unitarity of the time evolution operator?

Solution
Û† = (e−iĤt/~)† = eiĤ

†t/~ !
= eiĤt/~ = Û−1 ⇔ Ĥ† = Ĥ (10)

Exercise 36
Let’s consider the Hamiltonian

Ĥ = Ĥ0 + V̂ (11)

(i) Show that the equation
∂ρ̂u
∂β

= −Ĥρ̂u (12)

can be written in the integral form:

ρ̂u(β) = ρ̂0(β)−
∫ β

0

dβ′ρ̂0(β − β′)V̂ ρ̂u(β′) with ρ̂0(β) = e−βĤ0 (13)

(ii) Now let V̂ be a small perturbation, V̂ � Ĥ0. Find the first order in perturbation theory for ρ(x,x′;β)
with V̂ = V (x̂).

Solution

(i) We will show this by inserting the integral form in the equation:

∂β ρ̂u(β) = ∂β ρ̂0(β)− ρ̂0(0)V̂ ρ̂u(β)−
∫ β

0

dβ′∂β(ρ̂0(β − β′))V̂ ρ̂u(β′) =

= −Ĥ0ρ̂0(β)− V̂ ρ̂u(β)−
∫ β

0

dβ′(−Ĥ0)ρ̂0(β − β′)V̂ ρ̂u(β′) =

= −Ĥ0ρ̂u(β)− V̂ ρ̂u(β) = −Ĥρ̂u(β)

(14)

(ii) In order to find the first order in the perturbation theory, one can see that it is easiest to use the
integral form of the starting equation. There, one can see that the higher orders in the potential come
from the ρu within the integral. In order to see what the higher terms would be, one can simply insert
again the expression for ρu, and so on. (In other words, find the higher orders by iteration.) Then to
the first order in V̂ , we have

ρ̂u(β) = ρ̂0(β)−
∫ β

0

dβ′ρ̂0(β − β′)V̂ ρ̂0(β′) (15)

Then the matrix elements are

ρu(x, x′;β) = ρ0(x, x′;β)−
∫ β

0

dβ′dx′′ρ̂0(x, x′′;β − β′)V (x′′)ρ̂0(x′′, x′;β′) (16)

General information
The lecture takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

The central tutorial takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II


