## Exercises on Quantum Mechanics II (TM1/TV)

## Solution 2, discussed October 28 - November 1, 2019

## Exercise 9 (central tutorial)

(i) Show that if $\hat{A} \hat{B}=\hat{\mathbb{1}}=\hat{C} \hat{A}$ then we have

$$
\hat{B}=\hat{A}^{-1}=\hat{C}
$$

Remember that the inverse operator $\hat{A}^{-1}$ satisfies $|\psi\rangle=\hat{A}|\chi\rangle$ if and only if $|\chi\rangle=\hat{A}^{-1}|\psi\rangle$.
(ii) Given an example of operators $\hat{A}$ and $\hat{B}$ in Hilbert space for which $\hat{A} \hat{B}=\hat{\mathbb{1}}$ holds but for which $\hat{B} \hat{A} \neq \hat{\mathbb{1}}$.
(iii) Let $\hat{A}$ be an operator such that $\hat{A}^{2}=\lambda \hat{\mathbb{1}}$ where $\lambda \neq 1$ is a complex number. Write $(\hat{A}+\hat{\mathbb{1}})^{-1}$ explicitly in terms of $\hat{A}$.

## Solution

(i) To prove that $\hat{B}=\hat{C}$ we can multiply the first equation by $\hat{C}$ from the left:

$$
\hat{C} \stackrel{(1)}{=} \hat{C}(\hat{A} \hat{B})=(\hat{C} \hat{A}) \hat{B} \stackrel{(2)}{=} \hat{B}
$$

To show that $\hat{B}=\hat{C}$ is the inverse operator to $\hat{A}$, we first assume that $|\psi\rangle=\hat{A}|\chi\rangle$ and act on this with $\hat{C}$ and find $|\chi\rangle=\hat{C}|\psi\rangle$ which shows one direction of the equivalence. The other direction can be shown analogously by acting with $\hat{B}$.
(ii) We can consider a rescaled version of ladder operator in the harmonic oscillator. Remember that there we have an orthonormal basis of states $|n\rangle$ where $n=0,1,2, \ldots$ and creation and annihilation operator which act as

$$
\hat{a}^{\dagger}|n\rangle=\sqrt{n+1}|n+1\rangle, \quad \hat{a}|n\rangle=\sqrt{n}|n-1\rangle .
$$

Consider now modified ladder operators such that

$$
\hat{b}^{\dagger}|n\rangle=|n+1\rangle
$$

and

$$
\hat{b}|n\rangle= \begin{cases}|n-1\rangle, & n>0 \\ 0, & n=0\end{cases}
$$

We can now choose $\hat{A}=\hat{b}$ and $\hat{B}=\hat{b}^{\dagger}$. Acting on any basis state we find

$$
\hat{A} \hat{B}|n\rangle=\hat{b} \hat{b}^{\dagger}|n\rangle=\hat{b}|n+1\rangle=|n\rangle
$$

so $\hat{A} \hat{B}=\hat{\mathbb{1}}$ but acting on the ground state $|0\rangle$ we have

$$
\hat{B} \hat{A}|0\rangle=\hat{b}^{\dagger} \hat{b}|0\rangle=0
$$

so $\hat{A}$ and $\hat{B}$ are not inverse of each other.
(iii) Since $\hat{A}$ squares to something proportional to identity, any function of $\hat{A}$ that can be written as power series in $\hat{A}$ can be reduced to the form

$$
\alpha \hat{\mathbb{1}}+\beta \hat{A} .
$$

Let's try this ansatz for an inverse of $\hat{A}$ :

$$
\hat{\mathbb{1}}=(\hat{A}+\hat{\mathbb{1}})(\hat{A}+\hat{\mathbb{1}})^{-1}=(\hat{A}+\hat{\mathbb{1}})(\alpha \hat{\mathbb{1}}+\beta \hat{A})=\alpha \hat{\mathbb{1}}+\alpha \hat{A}+\beta \hat{A}+\beta \hat{A}^{2}
$$

The left and right hand side are equal if $\alpha$ and $\beta$ satisfy

$$
\alpha+\beta=0, \quad 1=\alpha+\beta \lambda
$$

These equations have unique solution

$$
\alpha=\frac{1}{1-\lambda}, \quad \beta=-\frac{1}{1-\lambda}
$$

which gives us a candidate for an inverse operator

$$
(\hat{A}+\hat{\mathbb{1}})^{-1}=\frac{\hat{\mathbb{1}}-\hat{A}}{1-\lambda}
$$

One can now easily check that this operator is not only right inverse (which is true by our construction) but also a left inverse.
Alternative solution: we can also use the geometric series to find the inverse operator. We have

$$
(\hat{A}+\hat{\mathbb{1}})^{-1}=\sum_{k=0}^{\infty}(-\hat{A})^{k}=\sum_{l=0}^{\infty} \lambda^{l}+(-\hat{A}) \sum_{m=0}^{\infty} \lambda^{m}=\frac{\hat{\mathbb{1}}-\hat{A}}{1-\lambda}
$$

where in the middle part we split the sum over all integers to a sum over all even integers $2 l$ plus a sum over all odd integers $2 m+1$.

## Exercise 10

Consider the operator $\hat{A}=\frac{d}{d x}$.
(i) Use the Taylor expansion to find out how $e^{\alpha \hat{A}}$ acts on wavefunctions. Interpret the result physically.
(ii) How do operators $\hat{B} \equiv \sinh (\alpha \hat{A})$ and $\hat{C} \equiv \sin (\alpha \hat{A})$ act on wavefunctions?

## Solution

(i) Acting with $e^{\alpha \hat{A}}$ on a function $\psi(x)$ we have

$$
e^{\alpha \hat{A}} \psi(x)=e^{\alpha \frac{d}{d x}} \psi(x)=\sum_{k=0}^{\infty} \frac{\alpha^{k}}{k!}\left(\frac{d}{d x}\right)^{k} \psi(x)=\psi(x+\alpha)
$$

so the resulting operator corresponds to a space translation of the wavefunction.
(ii) We have

$$
\hat{B}=\sinh (\alpha \hat{A})=\frac{e^{\alpha \hat{A}}-e^{-\alpha \hat{A}}}{2}
$$

By the result of the previous exercise this acts on $\psi(x)$ as

$$
\hat{B} \psi(x)=\frac{1}{2}(\psi(x+\alpha)-\psi(x-\alpha))
$$

Replacing $\alpha \rightarrow i \alpha$ and dividing by $i$ we find

$$
\hat{C} \psi(x)=\frac{i}{2}(\psi(x-i \alpha)-\psi(x+i \alpha))
$$

## Exercise 11

Find $\hat{A}^{\dagger}$ for $\hat{A}=|\varphi\rangle\langle\psi|$. Remember that $\hat{A}^{\dagger}$ is defined such that for any two vectors $|\psi\rangle$ and $|\chi\rangle$ we have $\langle\psi \mid \hat{A} \chi\rangle=\left\langle\hat{A}^{\dagger} \psi \mid \chi\right\rangle$.

Solution By definition of the conjugate operator we have

$$
\langle\chi| \hat{A}^{\dagger}|\eta\rangle=(\hat{A}|\chi\rangle,|\eta\rangle)=(\langle\psi \mid \chi\rangle|\varphi\rangle,|\eta\rangle)=\langle\chi \mid \psi\rangle\langle\varphi \mid \eta\rangle
$$

Comparing both sides we see that

$$
\hat{A}^{\dagger}=|\psi\rangle\langle\varphi| .
$$

## Exercise 12

(i) Show that for an orthonormal basis $\left|\delta_{j}\right\rangle$ we have the completeness relation

$$
\sum_{k}\left|\delta_{k}\right\rangle\left\langle\delta^{k}\right|=\hat{\mathbb{1}} .
$$

(ii) Consider a product of two operators $\hat{C}=\hat{A} \hat{B}$. Remember that the matrix elements of the operator $\hat{A}$ in the orthonormal basis $\left|\delta_{j}\right\rangle$ were defined as $A^{j}{ }_{k} \equiv\left\langle\delta^{j}\right| \hat{A}\left|\delta_{k}\right\rangle$. Show that the components of $\hat{C}$ are given by the usual product of matrices.
(iii) Show that the operator $\hat{A}$ can be reconstructed from its components via

$$
\hat{A}=\sum_{j k} A^{j}{ }_{k}\left|\delta_{j}\right\rangle\left\langle\delta^{k}\right|
$$

## Solution

(i) Since we have an orthonormal basis, any vector $|\psi\rangle$ can be expanded as

$$
|\psi\rangle=\sum_{j} a_{j}\left|\delta_{j}\right\rangle
$$

and

$$
\left\langle\delta^{k} \mid \psi\right\rangle=\sum_{j} a_{j}\left\langle\delta^{k} \mid \delta_{j}\right\rangle=a_{k} .
$$

Let us now apply $\sum_{k}\left|\delta^{k}\right\rangle\left\langle\delta_{k}\right|$ to an any vector $|\psi\rangle$

$$
\sum_{k}\left|\delta_{k}\right\rangle\left\langle\delta^{k} \mid \psi\right\rangle=\sum_{k} a_{k}\left|\delta_{k}\right\rangle=|\psi\rangle
$$

Since this holds for all vectors, we see that $\sum_{k}\left|\delta^{k}\right\rangle\left\langle\delta_{k}\right|=\hat{\mathbb{1}}$.
(ii) We have

$$
(\hat{C})^{j}{ }_{l}=\left\langle\delta^{j}\right| \hat{A} \hat{B}\left|\delta_{l}\right\rangle=\sum_{k}\left\langle\delta^{j}\right| \hat{A}\left|\delta_{k}\right\rangle\left\langle\delta^{k}\right| \hat{B}\left|\delta_{l}\right\rangle=\sum_{k} A^{j}{ }_{k} B^{k}{ }_{l}
$$

which is the usual rule for matrix multiplication. In the middle equation we inserted the completeness relation.
(iii) Plugging in the expression for components

$$
\sum_{j, k}\left\langle\delta^{j}\right| \hat{A}\left|\delta_{k}\right\rangle\left|\delta_{j}\right\rangle\left\langle\delta^{k}\right|=\sum_{j, k}\left|\delta_{j}\right\rangle\left\langle\delta^{j}\right| \hat{A}\left|\delta_{k}\right\rangle\left\langle\delta^{k}\right|=\hat{A}
$$

## Exercise 13

It was shown in the lecture that the matrix elements of the conjugate operator are

$$
\left\langle\delta^{j}\right| \hat{C}^{\dagger}\left|\delta_{l}\right\rangle=\left[\left\langle\delta^{l}\right| \hat{C}\left|\delta_{j}\right\rangle\right]^{*},
$$

i.e. the matrix of components is complex conjugate transpose. Use this to show that $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$.

Solution Let us calculate

$$
\begin{aligned}
\left\langle\delta^{j}\right|(\hat{A} \hat{B})^{\dagger}\left|\delta_{l}\right\rangle & =\left[\left\langle\delta^{l}\right| \hat{A} \hat{B}\left|\delta_{j}\right\rangle\right]^{*}=\sum_{k}\left[\left\langle\delta^{l}\right| \hat{A}\left|\delta_{k}\right\rangle\left\langle\delta^{k}\right| \hat{B}\left|\delta_{j}\right\rangle\right]^{*}=\sum_{k}\left[\left\langle\delta^{l}\right| \hat{A}\left|\delta_{k}\right\rangle\right]^{*}\left[\left\langle\delta^{k}\right| \hat{B}\left|\delta_{j}\right\rangle\right]^{*} \\
& =\sum_{k}\left[\left\langle\delta^{k}\right| \hat{A}^{\dagger}\left|\delta_{l}\right\rangle\right]\left[\left\langle\delta^{j}\right| \hat{B}^{\dagger}\left|\delta_{k}\right\rangle\right]=\sum_{k}\left\langle\delta^{j}\right| \hat{B}^{\dagger}\left|\delta_{k}\right\rangle\left\langle\delta^{k}\right| \hat{A}^{\dagger}\left|\delta_{l}\right\rangle \\
& =\left\langle\delta^{j}\right| \hat{B}^{\dagger} \hat{A}^{\dagger}\left|\delta_{l}\right\rangle .
\end{aligned}
$$

## Exercise 14 (central tutorial)

Consider a change of orthonormal basis $|\delta\rangle \rightarrow|\tilde{\delta}\rangle$ in the Hilbert space described by $U^{j}{ }_{k} \equiv\left\langle\tilde{\delta}^{j} \mid \delta_{k}\right\rangle$.
(i) Show that $U^{j}{ }_{k}$ are components of unitary matrix, i.e. $\left(U^{\dagger}\right)^{j}{ }_{k}=\left(U^{k}{ }_{j}\right)^{*}=\left(U^{-1}\right)^{j}{ }_{k}$.
(ii) Show that the components of bra vectors in the old and in the new basis are related by

$$
\tilde{\psi}_{k}=\sum_{j} \psi_{j}\left(U^{\dagger}\right)^{j}{ }_{k}
$$

(iii) Show that the matrix elements of operators transform as

$$
\tilde{A}_{m}^{j}=\sum_{k l} U^{j}{ }_{k} A^{k}{ }_{l}\left(U^{\dagger}\right)_{m}^{l}
$$

## Solution

(i) We have

$$
\left\langle\delta^{j} \mid \tilde{\delta}_{k}\right\rangle=\left\langle\tilde{\delta}^{k} \mid \delta_{j}\right\rangle^{*}=\left(U^{k}{ }_{j}\right)^{*}=\left(U^{\dagger}\right)^{j}{ }_{k} .
$$

To see that this is an inverse of $U$, calculate

$$
\left(U U^{\dagger}\right)^{j}{ }_{k}=\sum_{l} U^{j}{ }_{l}\left(U^{\dagger}\right)^{l}{ }_{k}=\sum_{l}\left\langle\tilde{\delta}^{j} \mid \delta_{l}\right\rangle\left\langle\delta^{l} \mid \tilde{\delta}_{k}\right\rangle=\left\langle\tilde{\delta}^{j} \mid \tilde{\delta}_{k}\right\rangle=\delta_{k}^{j}=(\hat{\mathbb{1}})_{k}^{j}
$$

Multiplication in opposite order is analogous.
(ii) Expressing the bra vector in two bases,

$$
\sum_{k} \tilde{\psi}_{k}\left\langle\tilde{\delta}^{k}\right|=\langle\psi|=\sum_{j} \psi_{j}\left\langle\delta^{j}\right|=\sum_{j, k} \psi_{j}\left\langle\delta^{j} \mid \tilde{\delta}_{k}\right\rangle\left\langle\tilde{\delta}^{k}\right|
$$

Comparing both sides we see that

$$
\tilde{\psi}_{k}=\sum_{j} \psi_{j}\left\langle\delta^{j} \mid \tilde{\delta}_{k}\right\rangle=\sum_{j} \psi_{j}\left(U^{\dagger}\right)^{j}{ }_{k}
$$

(iii) The matrix elements of $\hat{A}$ in the new basis are

$$
\tilde{A}_{m}^{j}=\left\langle\tilde{\delta}^{j}\right| \hat{A}\left|\tilde{\delta}_{m}\right\rangle=\sum_{k, l}\left\langle\tilde{\delta}^{j} \mid \delta_{k}\right\rangle\left\langle\delta^{k}\right| \hat{A}\left|\delta_{l}\right\rangle\left\langle\delta^{l} \mid \tilde{\delta}_{m}\right\rangle=\sum_{k, l} U^{j}{ }_{k} A^{k}{ }_{l}\left(U^{\dagger}\right)^{l}{ }_{m}
$$

## Exercise 15

Consider a Hermitian operator $\hat{A}$ and a unitary operator $\hat{U}$.
(i) Show that the trace of the operator $\hat{A}$ is independent of the choice of the basis. What property of the trace follows from the hermiticity of $\hat{A}$ ?
(ii) How are spectra of $\hat{A}$ and of $\hat{U} \hat{A} \hat{U}^{\dagger}$ related?

## Solution

(i) Let us calculate the trace of $\hat{A}$ in the new basis

$$
\sum_{j}\left\langle\tilde{\delta}^{j}\right| \hat{A}\left|\tilde{\delta}_{j}\right\rangle=\sum_{j, k, l}\left\langle\tilde{\delta}^{j} \mid \delta_{k}\right\rangle\left\langle\delta^{k}\right| \hat{A}\left|\delta_{l}\right\rangle\left\langle\delta^{l} \mid \tilde{\delta}_{j}\right\rangle=\sum_{k, l}\left\langle\delta^{l} \mid \delta_{k}\right\rangle\left\langle\delta^{k}\right| \hat{A}\left|\delta_{l}\right\rangle=\sum_{k}\left\langle\delta^{k}\right| \hat{A}\left|\delta_{k}\right\rangle .
$$

In particular we can choose a basis which diagonalizes $\hat{A}$. In this basis the eigenvalues are real (because $\hat{A}$ is Hermitian) so also their sum, i.e. the trace is real.
(ii) Recall that $\lambda \in \mathbb{C}$ is in the spectrum of $\hat{A}$ if there exists a vector $|\psi\rangle$ such that

$$
\hat{A}|\psi\rangle=\lambda|\psi\rangle .
$$

Acting on this equation with $\hat{U}$ from the left, we find that the vector $|\eta\rangle \equiv \hat{U}|\psi\rangle$ satisfies the equation

$$
\hat{U} \hat{A} \hat{U}^{\dagger}|\eta\rangle=\hat{U} \hat{A} \hat{U}^{\dagger} \hat{U}|\psi\rangle=\lambda \hat{U}|\psi\rangle=\lambda|\eta\rangle,
$$

i.e. is an eigenvector of $\hat{U} \hat{A} \hat{U}^{\dagger}$ with the same eigenvalue $\lambda$. Since $\hat{U}$ is unitary (and so in particular invertible), this provides a one-to-one correspondence between eigenvectors of $\hat{A}$ and $\hat{U} \hat{A} \hat{U}^{\dagger}$.

## Exercise 16

Consider a linear operator acting on a Hilbert space such that it maps one orthonormal basis into another one, $\hat{U}\left|\delta_{j}\right\rangle=\left|\delta_{j}^{\prime}\right\rangle$. How can you write this operator in terms of basis vectors? Find its hermitian conjugate.

## Solution

(i) If we consider action of $\sum_{k}\left|\delta_{k}^{\prime}\right\rangle\left\langle\delta^{k}\right|$ on basis vectors,

$$
\sum_{k}\left|\delta_{k}^{\prime}\right\rangle\left\langle\delta^{k} \mid \delta_{j}\right\rangle=\left|\delta_{j}^{\prime}\right\rangle
$$

which is exactly how $\hat{U}$ acts.
(ii) By the definition of conjugate operator, we have

$$
\left\langle\delta^{j}\right| \hat{U}^{\dagger}=\left\langle\delta^{\prime j}\right|
$$

which is the same as the action of $\sum_{k}\left|\delta_{k}\right\rangle\left\langle\delta^{\prime k}\right|$,

$$
\left\langle\delta^{j}\right| \sum_{k}\left|\delta_{k}\right\rangle\left\langle\delta^{\prime k}\right|=\left\langle\delta^{\prime j}\right| .
$$

## Exercise 17 (central tutorial)

The position operator $\hat{x}$ is hermitian. The momenum operator satisfies the commutation relation

$$
[\hat{x}, \hat{p}]=i \hbar \hat{\mathbb{1}} .
$$

Does this imply that $\hat{p}$ is a hermitian operator? Can there exist finite dimensional matrices $\hat{x}$ and $\hat{p}$ which satisfy these commutation relations?

## Solution

(i) The commutation relations don't force $\hat{p}$ to be hermitian. If we had a hermitian solution (like the standard $\hat{p}=-i \hbar \frac{\partial}{\partial x}$ ) we can add to it any complex multiple of $\hat{x}$ without spoiling the commutation relations. Now we have

$$
(\hat{p}+\alpha \hat{x})^{\dagger}=\hat{p}^{\dagger}+\alpha^{*} \hat{x}^{\dagger}=\hat{p}+\alpha^{*} \hat{x}
$$

which agrees with $\hat{p}+\alpha \hat{x}$ only if $\alpha$ is real. So taking $\alpha$ with non-vanishing imaginary part is a counterexample to the question.
(ii) There cannot exist any finite-dimensional matrices $\hat{x}$ and $\hat{p}$ which would satisfy the canonical commutation relations. The reason for it is that the trace of any commutator vanishes by cyclicity of the trace,

$$
\operatorname{Tr}[\hat{A}, \hat{B}]=\operatorname{Tr}(\hat{A} \hat{B}-\hat{B} \hat{A})=\operatorname{Tr}(\hat{A} \hat{B}-\hat{A} \hat{B})=0
$$

while the trace of the identity matrix on the right-hand side is the dimension of the vector space. We thus find an equation

$$
0=\operatorname{Tr}[\hat{x}, \hat{p}]=i \hbar \operatorname{Tr} \hat{\mathbb{1}}=i \hbar n
$$

which is a contradiction with finite dimensionality of the vector space.

## Exercise 18 (central tutorial)

Check by direct calculation that

$$
\int d q^{\prime \prime}\left[X_{q^{\prime \prime}}^{q} P_{q^{\prime}}^{q^{\prime \prime}}-P_{q^{\prime \prime}}^{q} X_{q^{\prime}}^{q^{\prime \prime}}\right]=i \hbar \delta_{q^{\prime}}^{q}=i \hbar \delta\left(q-q^{\prime}\right)
$$

where the matrix elements of $\hat{X}$ are $X^{q}{ }_{q^{\prime}} \equiv\langle q| \hat{X}\left|q^{\prime}\right\rangle$ and similarly for $\hat{P}$.
Solution We can rewrite the formula in bra-ket notation as

$$
\int d q^{\prime \prime}\left[\langle q| \hat{X}\left|q^{\prime \prime}\right\rangle\left\langle q^{\prime \prime}\right| \hat{P}\left|q^{\prime}\right\rangle-\langle q| \hat{P}\left|q^{\prime \prime}\right\rangle\left\langle q^{\prime \prime}\right| \hat{X}\left|q^{\prime}\right\rangle\right]=i \hbar\left\langle q \mid q^{\prime}\right\rangle=i \hbar \delta\left(q-q^{\prime}\right)
$$

Now we have the basic identification between vectors and wave functions

$$
\psi(q)=\langle q \mid \psi\rangle
$$

and so

$$
\langle q| \hat{X}|\psi\rangle=q \psi(q), \quad\langle q| \hat{P}|\psi\rangle=-i \hbar \partial_{q} \psi(q) .
$$

Choosing $|\psi\rangle=\left|q^{\prime}\right\rangle$ so that $\psi(q)=\left\langle q \mid q^{\prime}\right\rangle=\delta\left(q-q^{\prime}\right)$ we find the matrix elements

$$
\langle q| \hat{X}\left|q^{\prime}\right\rangle=q \delta\left(q-q^{\prime}\right), \quad\langle q| \hat{P}\left|q^{\prime}\right\rangle=-i \hbar \partial_{q} \delta\left(q-q^{\prime}\right)=-i \hbar \delta^{\prime}\left(q-q^{\prime}\right)
$$

We can now use this in the equation above

$$
\begin{aligned}
I & =\int d q^{\prime \prime}\left[\langle q| \hat{X}\left|q^{\prime \prime}\right\rangle\left\langle q^{\prime \prime}\right| \hat{P}\left|q^{\prime}\right\rangle-\langle q| \hat{P}\left|q^{\prime \prime}\right\rangle\left\langle q^{\prime \prime}\right| \hat{X}\left|q^{\prime}\right\rangle\right] \\
& =\int d q^{\prime \prime}\left[q \delta\left(q-q^{\prime \prime}\right)(-i \hbar) \delta^{\prime}\left(q^{\prime \prime}-q^{\prime}\right)-(-i \hbar) \delta^{\prime}\left(q-q^{\prime \prime}\right) q^{\prime \prime} \delta\left(q^{\prime \prime}-q^{\prime}\right)\right] \\
& =q(-i \hbar) \delta^{\prime}\left(q-q^{\prime}\right)-(-i \hbar) \delta^{\prime}\left(q-q^{\prime}\right) q^{\prime}=-i \hbar\left(q-q^{\prime}\right) \delta^{\prime}\left(q-q^{\prime}\right) \\
& =i \hbar \delta\left(q-q^{\prime}\right)
\end{aligned}
$$

We used the relation $x \delta^{\prime}(x)=-\delta(x)$ which follows by acting on test function $\phi(x)$,

$$
\int x \delta^{\prime}(x) \phi(x) d x=-\int \delta(x) \frac{d}{d x}(x \phi(x)) d x=-\int \delta(x)\left[\phi(x)+x \phi^{\prime}(x)\right] d x=-\int \delta(x) \phi(x) d x
$$

