## Exercises on Quantum Mechanics II (TM1/TV)

Problem set 11, discussed January 13 - January 17, 2019

## Exercise 64 (Central Tutorial)

Let's consider the hydrogen atom ignoring the spins of the electron and of the proton. In order to have non-zero transition probability from an energy state $\left|\psi_{a}\right\rangle$ to another one $\left|\psi_{b}\right\rangle$, the matrix element of the dipole moment operator $\boldsymbol{D}_{b a} \equiv e\left\langle\psi_{b}\right| \hat{\boldsymbol{r}}\left|\psi_{a}\right\rangle$ must be non-zero too $(\hat{\boldsymbol{r}}=(\hat{x}, \hat{y}, \hat{z})$ ). The conditions to have non-zero transition probabilities are called selection rules.
(i) Which are good quantum numbers that characterize the state $|\psi\rangle$ of the hydrogen atom? To what do they physically correspond?
(ii) Which values can those quantum numbers have? What is the degeneracy of the state for a given energy level?
(iii) Recalling the definition of the angular momentum operator $\hat{\boldsymbol{L}}=\left(\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}\right)$, calculate

$$
\begin{equation*}
\left[\hat{L}_{z}, \hat{x}\right] \quad, \quad\left[\hat{L}_{z}, \hat{y}\right] \quad, \quad\left[\hat{L}_{z}, \hat{z}\right] \tag{1}
\end{equation*}
$$

(iv) Using the results of the previous point and taking the expectation values of those between two different states $\left|\psi_{a}\right\rangle$ and $\left|\psi_{b}\right\rangle$, derive the selection rules to have $\boldsymbol{D}_{a b} \neq 0$.
(v) These are not the only selection rules. Recall the definition of the Casimir operator $\hat{L}^{2}$; what is the action of this operator on an eigenstate $|\psi\rangle$ ? Prove that

$$
\begin{equation*}
\left[\hat{L}^{2},\left[\hat{L}^{2}, \hat{\boldsymbol{r}}\right]\right]=2 \hbar^{2}\left(\hat{\boldsymbol{r}} \hat{L}^{2}+\hat{L}^{2} \hat{\boldsymbol{r}}\right) \tag{2}
\end{equation*}
$$

(vi) Use the previous results to find other selection rules for the transition between $\left|\psi_{a}\right\rangle$ and $\left|\psi_{b}\right\rangle$.
(vii) What do these selection rules correspond physically to?

## Solution

(i) From the course of QMI we know that a state of the hydrogen atom (ignoring spins) is characterized by three quantum numbers: $n$ for the energy level, $l$ for the total angular momentum and $m$ for the projection of the angular momentum on the $\hat{z}$-axis. Therefore, not considering super-positions of states, we can write the state as

$$
\begin{equation*}
|\psi\rangle=|n, l, m\rangle \tag{3}
\end{equation*}
$$

(ii) The quantum number for the energy $n$ can take all positive integer values, i.e. $n \in \mathbb{N} ; l$ can take integer values in $[0, n-1]$; lastly, $m$ can take integer values in $[-l,+l]$.
For a fixed $l, m$ has $2 l+1$ possibilities. In the same way, for a fixed $n, l$ takes values from 0 to $n-1$. Therefore the degeneracy for a given energy level specified by $n$ is

$$
\begin{equation*}
\sum_{l=0}^{n-1}(2 l+1)=2 \sum_{l=0}^{n-1}(l)+n=2 \frac{(n-1) n}{2}+n=n^{2} \tag{4}
\end{equation*}
$$

(iii) The angular momentum operators for each component are

$$
\begin{aligned}
& \hat{L}_{x}=\hat{y} \hat{p}_{z}-\hat{z} \hat{p}_{y} \\
& \hat{L}_{y}=\hat{z} \hat{p}_{x}-\hat{x} \hat{p}_{z} \quad \text { with } \quad \hat{\mathbf{L}}=\left(\begin{array}{l}
\hat{L}_{x} \\
\hat{L}_{y} \\
\hat{L}_{z}=\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}
\end{array}\right), ~
\end{aligned}
$$

Using Heisenberg commutation relations

$$
\begin{equation*}
\left[\hat{r}_{j}, \hat{p}_{k}\right]=i \hbar \delta_{j k} \mathbb{1} \quad, \quad \hat{\boldsymbol{r}}=(\hat{x}, \hat{y}, \hat{z}) \quad, \quad \hat{\boldsymbol{p}}=\left(\hat{p}_{x}, \hat{p}_{y}, \hat{p}_{z}\right) \tag{5}
\end{equation*}
$$

it follows that:

$$
\begin{equation*}
\left[\hat{L}_{z}, \hat{z}\right]=0 \tag{6}
\end{equation*}
$$

since $\hat{L}_{z}$ does not depend on $\hat{z}$ or $\hat{p}_{z}$.

$$
\begin{align*}
& {\left[\hat{L}_{z}, \hat{x}\right]=\left[\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}, \hat{x}\right]=0-\left[\hat{y} \hat{p}_{x}, \hat{x}\right]=i \hbar \hat{y}} \\
& {\left[\hat{L}_{z}, \hat{y}\right]=\left[\hat{x} \hat{p}_{y}-\hat{y} \hat{p}_{x}, \hat{y}\right]=\left[\hat{x} \hat{p}_{y}, \hat{y}\right]-0=-i \hbar \hat{x}} \tag{7}
\end{align*}
$$

(iv) Let's calculate the matrix element of $\hat{\boldsymbol{r}}$ with these information. As we know the action of $\hat{L}_{z}$ on $|n, l, m\rangle$ is given by

$$
\begin{align*}
& \quad \hat{L}_{z}|n, l, m\rangle=\hbar m|n, l, m\rangle  \tag{8}\\
& 0=\langle\underbrace{n^{\prime}, l^{\prime}, m^{\prime}}_{\psi_{b}}|\left[\hat{L}_{z}, \hat{z}\right]|\underbrace{n, l, m}_{\psi_{a}}\rangle=\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right|\left[\hat{L}_{z}, \hat{z}\right]|n, l, m\rangle=\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{L}_{z} \hat{z}-\hat{z} \hat{L}_{z}|n, l, m\rangle= \\
&= \hbar\left(m^{\prime}-m\right)\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{z}|n, l, m\rangle \tag{9}
\end{align*}
$$

Therefore $\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{z}|n, l, m\rangle$ can be different from 0 only if $m=m^{\prime}$.
Doing the same with the other two commutators we find that:

$$
\left\{\begin{array}{l}
i \hbar\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{y}|n, l, m\rangle=\hbar\left(m^{\prime}-m\right)\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{x}|n, l, m\rangle  \tag{10}\\
-i \hbar\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{x}|n, l, m\rangle=\hbar\left(m^{\prime}-m\right)\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{y}|n, l, m\rangle
\end{array}\right.
$$

The solution found before $m^{\prime}=m$ would lead to $\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{x}|n, l, m\rangle=\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{y}|n, l, m\rangle=0$. Solving this system with $m^{\prime} \neq m$ we find that:

$$
\begin{equation*}
\hbar^{2}\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{y}|n, l, m\rangle=\hbar^{2}\left(m^{\prime}-m\right)^{2}\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{y}|n, l, m\rangle \tag{11}
\end{equation*}
$$

It is true only if:

$$
\begin{equation*}
\hbar^{2}=\hbar^{2}\left(m^{\prime}-m\right)^{2} \quad \Longleftrightarrow \quad m^{\prime}-m= \pm 1 \tag{12}
\end{equation*}
$$

Therefore the conditions to have a non-zero dipole moment expectation value are

$$
\begin{equation*}
m^{\prime}-m \equiv \Delta m=0, \pm 1 \tag{13}
\end{equation*}
$$

(v) The casimir operator is defined as:

$$
\begin{equation*}
\hat{\boldsymbol{L}}^{2}=\hat{L}_{x}^{2}+\hat{L}_{y}^{2}+\hat{L}_{z}^{2} \tag{14}
\end{equation*}
$$

Its action on a state $\psi \equiv|n, l, m\rangle$ is given by

$$
\begin{equation*}
\hat{\boldsymbol{L}}^{2}|n, l, m\rangle=\hbar^{2} l(l+1)|n, l, m\rangle \tag{15}
\end{equation*}
$$

To prove the relation we first prove other useful relations. In the following we are going to use Einstein's convention with Euclidean metric.

$$
\begin{equation*}
\left[\hat{\boldsymbol{L}}^{2}, \hat{L}_{j}\right]=\left[\hat{L}_{i} \hat{L}_{i}, \hat{L}_{j}\right]=\hat{L}_{i}\left[\hat{L}_{i}, \hat{L}_{j}\right]+\left[\hat{L}_{i}, \hat{L}_{j}\right] \hat{L}_{i}=i \hbar \epsilon_{i j k}\left(\hat{L}_{i} \hat{L}_{k}+\hat{L}_{k} \hat{L}_{i}\right) \stackrel{\text { symm. }}{=} 0 \tag{16}
\end{equation*}
$$

where the commutation relation between angular momentum operators has been used:

$$
\begin{equation*}
\left[\hat{L}_{i}, \hat{L}_{j}\right]=i \hbar \epsilon_{i j k} \hat{L}_{k} \tag{17}
\end{equation*}
$$

Lastly:

$$
\begin{equation*}
\left[\hat{L}_{i}, \hat{x}_{j}\right]=\epsilon_{i n m}\left[\hat{x}_{n} \hat{p}_{m}, \hat{x}_{j}\right]=\epsilon_{i n m} \hat{x}_{n}\left[\hat{p}_{m}, \hat{x}_{j}\right]=-i \hbar \epsilon_{i n m} \hat{x}_{n} \delta_{m j}=i \hbar \epsilon_{i j k} \hat{x}_{k} \tag{18}
\end{equation*}
$$

We can now start the computation.

$$
\begin{align*}
{\left[\hat{\boldsymbol{L}}^{2}, \hat{x}_{n}\right] } & =\hat{L}_{i}\left[\hat{L}_{i}, \hat{x}_{n}\right]+\left[\hat{L}_{i}, \hat{x}_{n}\right] \hat{L}_{i}=i \hbar \epsilon_{i n j}\left(\hat{L}_{i} \hat{x}_{j}+\hat{x}_{j} \hat{L}_{i}\right) \stackrel{E q .18}{=} i \hbar \epsilon_{i n j}\left(\epsilon_{i j k} \hat{x}_{k}+2 \hat{x}_{j} \hat{L}_{i}\right)=  \tag{19}\\
& =2 i \hbar\left(\epsilon_{i j n} \hat{x}_{i} \hat{L}_{j}-i \hbar \hat{x}_{n}\right)
\end{align*}
$$

Therefore:

$$
\begin{align*}
& {\left[\hat{\boldsymbol{L}}^{2}, \hat{x}\right]=2 i \hbar\left(\hat{y} \hat{L}_{z}-\hat{z} \hat{L}_{y}-i \hbar \hat{x}\right)} \\
& {\left[\hat{\boldsymbol{L}}^{2}, \hat{y}\right]=2 i \hbar\left(\hat{z} \hat{L}_{x}-\hat{x} \hat{L}_{z}-i \hbar \hat{y}\right)}  \tag{20}\\
& {\left[\hat{\boldsymbol{L}}^{2}, \hat{z}\right]=2 i \hbar\left(\hat{x} \hat{L}_{y}-\hat{y} \hat{L}_{x}-i \hbar \hat{z}\right)}
\end{align*}
$$

We now calculate the commutator $\left[\hat{\boldsymbol{L}}^{2},\left[\hat{\boldsymbol{L}}^{2}, \hat{z}\right]\right]$ :

$$
\begin{equation*}
\left[\hat{\boldsymbol{L}}^{2},\left[\hat{\boldsymbol{L}}^{2}, \hat{z}\right]\right]=\left[\hat{\boldsymbol{L}}^{2}, 2 i \hbar\left(\hat{x} \hat{L}_{y}-\hat{y} \hat{L}_{x}-i \hbar \hat{z}\right)\right] \stackrel{E q .16}{=} 2 i \hbar\left(\left[\hat{\boldsymbol{L}}^{2}, \hat{x}\right] \hat{L}_{y}-\left[\hat{\boldsymbol{L}}^{2}, \hat{y}\right] \hat{L}_{x}-i \hbar\left[\hat{\boldsymbol{L}}^{2}, \hat{z}\right]\right) \tag{21}
\end{equation*}
$$

We analyze the first two terms separately:

$$
\begin{align*}
{\left[\hat{\boldsymbol{L}}^{2}, \hat{x}\right] \hat{L}_{y} } & =2 i \hbar\left(\hat{y} \hat{L}_{z}-\hat{z} \hat{L}_{y}-i \hbar \hat{x}\right) \hat{L}_{y}=2 i \hbar\left(\hat{y} \hat{L}_{z}-i \hbar \hat{x}\right) \hat{L}_{y}-2 i \hbar \hat{z} \hat{L}_{y}^{2}=  \tag{22}\\
& \stackrel{E q .18}{=} 2 i \hbar\left(\hat{L}_{z} \hat{y} \hat{L}_{y}-\hat{z} \hat{L}_{y}^{2}\right)
\end{align*}
$$

For the second one:

$$
\begin{align*}
-\left[\hat{\boldsymbol{L}}^{2}, \hat{y}\right] \hat{L}_{x} & =-2 i \hbar\left(\hat{z} \hat{L}_{z}-\hat{x} \hat{L}_{z}-i \hbar \hat{y}\right) \hat{L}_{x}=2 i \hbar\left(-\hat{z} \hat{L}_{x}^{2}+\hat{x} \hat{L}_{z} \hat{L}_{x}+i \hbar \hat{y} \hat{L}_{x}\right)=  \tag{23}\\
& \stackrel{E q .18}{=} 2 i \hbar\left(\hat{L}_{z} \hat{x} \hat{L}_{x}-\hat{z} \hat{L}_{x}^{2}\right)
\end{align*}
$$

Adding them:

$$
\begin{equation*}
\left[\hat{\boldsymbol{L}}^{2}, \hat{x}\right] \hat{L}_{y}-\left[\hat{\boldsymbol{L}}^{2}, \hat{y}\right] \hat{L}_{x}=2 i \hbar\left(\hat{L}_{z}\left(\hat{x} \hat{L}_{x}+\hat{y} \hat{L}_{y}\right)-\hat{z}\left(\hat{L}_{x}^{2}+\hat{L}_{y}^{2}\right)\right)=2 i \hbar\left(\hat{L}_{z} \hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{L}}-\hat{z} \hat{L}_{z}^{2}-\hat{z} \hat{\boldsymbol{L}}^{2}+\hat{z} \hat{L}_{z}^{2}\right) \tag{24}
\end{equation*}
$$

But we have that:

$$
\begin{equation*}
\hat{\boldsymbol{r}} \cdot \hat{\boldsymbol{L}}=\hat{x}_{i} \hat{L}_{i}=\epsilon_{i j k} \hat{x}_{i} \hat{x}_{j} \hat{p}_{k}=0 \tag{25}
\end{equation*}
$$

Therefore

$$
\begin{equation*}
\left[\hat{\boldsymbol{L}}^{2}, \hat{x}\right] \hat{L}_{y}-\left[\hat{\boldsymbol{L}}^{2}, \hat{y}\right] \hat{L}_{x}=-2 i \hbar \hat{z} \hat{\boldsymbol{L}}^{2} \tag{26}
\end{equation*}
$$

Combining this result with

$$
\begin{equation*}
-i \hbar\left[\hat{\boldsymbol{L}}^{2}, \hat{z}\right]=-i \hbar\left(\hat{\boldsymbol{L}}^{2} \hat{z}-\hat{z} \hat{\boldsymbol{L}}^{2}\right) \tag{27}
\end{equation*}
$$

we get from Equation 21 the final result:

$$
\begin{equation*}
\left[\hat{\boldsymbol{L}}^{2},\left[\hat{\boldsymbol{L}}^{2}, \hat{z}\right]\right]=2 \hbar^{2}\left(\hat{z} \hat{\boldsymbol{L}}^{2}+\hat{\boldsymbol{L}}^{2} \hat{z}\right) \tag{28}
\end{equation*}
$$

Therefore we can conclude in general that:

$$
\begin{equation*}
\left[\hat{\boldsymbol{L}}^{2},\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{r}}\right]\right]=2 \hbar^{2}\left(\hat{\boldsymbol{r}} \hat{\boldsymbol{L}}^{2}+\hat{\boldsymbol{L}}^{2} \hat{\boldsymbol{r}}\right) \tag{29}
\end{equation*}
$$

Note: If we consider instead of $\hat{\boldsymbol{r}}$ an operator $\hat{\boldsymbol{v}}$ such that

$$
\begin{equation*}
\left[\hat{L}_{i}, \hat{v}_{j}\right]=i \hbar \epsilon_{i j k} \hat{v}_{k} \tag{30}
\end{equation*}
$$

then the proof is almost identical: the only difference is that in general Equation 25 is not true anymore. This would lead to an extra term proportional to $\hat{\boldsymbol{L}}(\hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{L}})$. Keeping into account the coefficient, the result reads

$$
\begin{equation*}
\left[\hat{\boldsymbol{L}}^{2},\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{v}}\right]\right]=2 \hbar^{2}\left(\hat{\boldsymbol{v}} \hat{\boldsymbol{L}}^{2}+\hat{\boldsymbol{L}}^{2} \hat{\boldsymbol{v}}\right)-4 \hbar^{2} \hat{\boldsymbol{L}}(\hat{\boldsymbol{v}} \cdot \hat{\boldsymbol{L}}) \tag{31}
\end{equation*}
$$

(vi) We can now use this result to derive the other selection rules.

$$
\begin{align*}
\langle\underbrace{n^{\prime}, l^{\prime}, m^{\prime}}_{\psi_{b}}|\left[\hat{\boldsymbol{L}}^{2},\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{r}}\right]\right]||\underbrace{n, l, m}_{\psi_{a}}\rangle & =2 \hbar^{2}\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{\boldsymbol{r}} \hat{\boldsymbol{L}}^{2}+\hat{\boldsymbol{L}}^{2} \hat{\boldsymbol{r}}|n, l, m\rangle=  \tag{32}\\
& =2 \hbar^{4}\left[l^{\prime}\left(l^{\prime}+1\right)+l(l+1)\right]\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{\boldsymbol{r}}|n, l, m\rangle
\end{align*}
$$

But on the other side:

$$
\begin{align*}
\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right|\left[\hat{\boldsymbol{L}}^{2},\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{r}}\right]\right]|n, l, m\rangle & =\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{\boldsymbol{L}}^{2}\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{r}}\right]-\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{r}}\right] \hat{\boldsymbol{L}}^{2}|n, l, m\rangle= \\
& =\hbar^{2}\left[l^{\prime}\left(l^{\prime}+1\right)-l(l+1)\right]\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right|\left[\hat{\boldsymbol{L}}^{2}, \hat{\boldsymbol{r}}\right]|n, l, m\rangle=  \tag{33}\\
& =\hbar^{4}\left[l^{\prime}\left(l^{\prime}+1\right)-l(l+1)\right]^{2}\left\langle n^{\prime}, l^{\prime}, m^{\prime}\right| \hat{\boldsymbol{r}}|n, l, m\rangle
\end{align*}
$$

Therefore the condition to have a non-zero dipole moment is:

$$
\begin{equation*}
2\left[l^{\prime}\left(l^{\prime}+1\right)+l(l+1)\right]=\left[l^{\prime}\left(l^{\prime}+1\right)-l(l+1)\right]^{2} \tag{34}
\end{equation*}
$$

The term in the bracket on the right can be written as

$$
\begin{equation*}
l^{\prime}\left(l^{\prime}+1\right)-l(l+1)=\left(l^{\prime}+l+1\right)\left(l^{\prime}-l\right) \tag{35}
\end{equation*}
$$

The one on the left instead:

$$
\begin{equation*}
2\left[l^{\prime}\left(l^{\prime}+1\right)+l(l+1)\right]=\left(l^{\prime}+l+1\right)^{2}+\left(l^{\prime}-l\right)^{2}-1 \tag{36}
\end{equation*}
$$

Therefore the condition in Equation 34 can be written as:

$$
\begin{equation*}
\left[\left(l^{\prime}+l+1\right)^{2}-1\right]\left[\left(l^{\prime}-l\right)^{2}-1\right]=0 \tag{37}
\end{equation*}
$$

The second term of the product is 0 only if:

$$
\begin{equation*}
l^{\prime}-l= \pm 1 \tag{38}
\end{equation*}
$$

The first term is 0 only if $l^{\prime}=l=0$; the corresponding matrix element is in principle not zero but direct computation of $\left\langle n^{\prime}, 0,0\right| \hat{\boldsymbol{r}}|n, 0,0\rangle$ shows that this matrix element is indeed vanishing. In fact, the radial part of the associated wave function does not depend on the angle, while the spherical harmonies $Y_{0}^{0}(\theta, \phi)$ is constant: therefore the integration of $\boldsymbol{r}$ on the solid angle gives a vanishing result.


Abbildung 1: Possible transitions.
(vii) The selection rules are

$$
\left\{\begin{array}{l}
\Delta m=0, \pm 1  \tag{39}\\
\Delta l= \pm 1
\end{array}\right.
$$

The condition on $\Delta l$ has an important physical reason. The transition between two energy level happens through the absorption/emission of a photon which is a spin-1 particle. Therefore the selection rule on $l$ just reflects angular momentum conservation.

## Exercise 65

Show that the life time $\tau$ of an atom in an excited state is inversely proportional to the Einstein-coefficient $A$ of spontaneous emission.

Solution The definition of Einstein coefficient is

$$
\begin{equation*}
\frac{\mathrm{d} N_{2}}{\mathrm{~d} t}=-A_{21} N_{2} \tag{40}
\end{equation*}
$$

where $N_{2}$ is the number of atoms in the excited level and $A_{21}$ is the related Einstein coefficient.
The solution is

$$
\begin{equation*}
N_{2}(t)=N_{2}(0) e^{-A_{21} t} \tag{41}
\end{equation*}
$$

Therefore the lifetime is

$$
\begin{equation*}
\tau=\frac{1}{A_{21}} \tag{42}
\end{equation*}
$$

## Exercise 66

Consider a two-level system as in the lecture. Write the equations for the occupation number of the lower level, $\frac{d N_{a}}{d t}$, and upper level, $\frac{d N_{b}}{d t}$. Using these, show that $N_{a}+N_{b}=$ const.

Solution The equations for the occupation numbers of the two levels are given by

$$
\begin{align*}
\frac{d N_{b}}{d t} & =-N_{b} B_{b a} \rho+N_{a} B_{a b} \rho-N_{b} A_{a b}  \tag{43}\\
\frac{d N_{a}}{d t} & =N_{b} B_{b a} \rho-N_{a} B_{a b} \rho+N_{b} A_{a b}
\end{align*}
$$

By summing these two equations we obtain

$$
\begin{equation*}
\frac{d}{d t}\left(N_{a}+N_{b}\right)=0 \Longrightarrow N_{a}+N_{b}=\text { const } . \tag{44}
\end{equation*}
$$

## Exercise 67

Consider the general Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi(q, t)}{\partial t}=-\frac{\hbar}{2 m} \frac{\partial^{2} \psi(q, t)}{\partial q^{2}}+V(q) \psi(q, t) \tag{45}
\end{equation*}
$$

where V is at most quadratic in $q$. Validate that the Ansatz

$$
\begin{equation*}
\psi(q, t)=\frac{1}{N} \exp \left[\alpha(t)+\frac{i}{\hbar} p_{c l}(t)\left(q-q_{c l}(t)\right)-\frac{\left(q-q_{c l}(t)\right)^{2}}{2 \sigma^{2}(t)}\right] \tag{46}
\end{equation*}
$$

where $p_{c l}=m \frac{d q_{c l}}{d t}$ leads to an equation of the form

$$
\begin{equation*}
F_{1}(t)+F_{2}(t)\left(q-q_{c l}(t)\right)+F_{3}(t)\left(q-q_{c l}(t)\right)^{2}=0 \tag{47}
\end{equation*}
$$

Show that

$$
\begin{align*}
& F_{1}=0 \equiv \frac{d \alpha}{d t}=\frac{i}{\hbar}\left(\frac{p_{c l}^{2}}{2 m}-V\left(q_{c l}\right)\right)-\frac{i \hbar}{2 m \sigma^{2}(t)} \\
& F_{2}=0 \equiv \frac{d p_{c l}}{d t}=-\frac{\partial V}{\partial q}\left(q_{c l}\right)  \tag{48}\\
& F_{3}=0 \equiv \frac{d \sigma^{2}}{d t}=\frac{i \hbar}{m}-\frac{i}{\hbar} \frac{\partial^{2} V}{\partial q^{2}} \sigma^{4}
\end{align*}
$$

Solution Substituting the ansatz for $\psi(q, t)$ into (43) and using $p_{c l} \frac{d q_{c l}}{d t}=\frac{p_{c l}}{m}$ one obtains

$$
\begin{equation*}
0=\frac{\psi(q, t)}{2 m \sigma^{4}}\left[-\hbar^{2} \sigma^{2}+p_{c l}^{2} \sigma^{4}-2 m V(q) \sigma^{4}+2 i \hbar m \frac{d \alpha}{d t} \sigma^{4}-2 m \sigma^{4} \frac{d p_{c l}}{d t}\left(q-q_{c l}\right)+\left(\hbar^{2}+2 i \hbar m \sigma \frac{d \sigma}{d t}\right)\left(q-q_{c l}\right)^{2}\right] \tag{49}
\end{equation*}
$$

Since $\frac{\psi(q, t)}{2 m \sigma^{4}} \neq 0$, it follows

$$
\begin{equation*}
-\hbar^{2} \sigma^{2}+p_{c l}^{2} \sigma^{4}-2 m V(q) \sigma^{4}+2 i \hbar m \frac{d \alpha}{d t} \sigma^{4}-2 m \sigma^{4} \frac{d p_{c l}}{d t}\left(q-q_{c l}\right)+\left(\hbar^{2}+2 i \hbar m \sigma \frac{d \sigma}{d t}\right)\left(q-q_{c l}\right)^{2}=0 \tag{50}
\end{equation*}
$$

Expanding $V(q)$ around $q_{c l}$ we obtain

$$
\begin{equation*}
V(q)=V\left(q_{c l}\right)+\frac{d V}{d q}\left(q-q_{c l}\right)+\frac{1}{2} \frac{d^{2} V}{d q^{2}}\left(q-q_{c l}\right)^{2} \tag{51}
\end{equation*}
$$

Note that all higher derivatives of V vanish since V is at most quadratic in $q$. Following this, let's collect all the terms

$$
\begin{align*}
& F_{1}(t)=-\hbar^{2} \sigma^{2}+p_{c l}^{2} \sigma^{4}-2 m V\left(q_{c l}\right) \sigma^{4}+2 i \hbar m \frac{d \alpha}{d t} \sigma^{4} \\
& F_{2}(t)=-2 m \sigma^{4} \frac{d p_{c l}}{d t}-2 m \sigma^{4} \frac{d V}{d q}  \tag{52}\\
& F_{3}(t)=\hbar^{2}+2 i \hbar m \sigma \frac{d \sigma}{d t}-m \sigma^{4} \frac{d^{2} V}{d q^{2}}
\end{align*}
$$

Then, the equation (50) becomes

$$
\begin{equation*}
F_{1}(t)+F_{2}(t)\left(q-q_{c l}(t)\right)+F_{3}(t)\left(q-q_{c l}(t)\right)^{2}=0 \tag{53}
\end{equation*}
$$

Now from the condition $F_{1}=F_{2}=F_{3}=0$ the proposition given by (48) follows.

## General information

The lecture takes place on:
Monday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
The central tutorial takes place on Monday at 12:00-14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

