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Exercise 64 (Central Tutorial)
Let’s consider the hydrogen atom ignoring the spins of the electron and of the proton. In order to have
non-zero transition probability from an energy state |ψa〉 to another one |ψb〉, the matrix element of the
dipole moment operator Dba ≡ e 〈ψb | r̂ |ψa〉 must be non-zero too (r̂ = (x̂, ŷ, ẑ)). The conditions to have
non-zero transition probabilities are called selection rules.

(i) Which are good quantum numbers that characterize the state |ψ〉 of the hydrogen atom? To what do
they physically correspond?

(ii) Which values can those quantum numbers have? What is the degeneracy of the state for a given energy
level?

(iii) Recalling the definition of the angular momentum operator L̂ = (L̂x, L̂y, L̂z), calculate[
L̂z, x̂

]
,
[
L̂z, ŷ

]
,
[
L̂z, ẑ

]
(1)

(iv) Using the results of the previous point and taking the expectation values of those between two different
states |ψa〉 and |ψb〉, derive the selection rules to have Dab 6= 0.

(v) These are not the only selection rules. Recall the definition of the Casimir operator L̂2; what is the
action of this operator on an eigenstate |ψ〉? Prove that[

L̂2,
[
L̂2, r̂

]]
= 2~2(r̂L̂2 + L̂2r̂) (2)

(vi) Use the previous results to find other selection rules for the transition between |ψa〉 and |ψb〉.

(vii) What do these selection rules correspond physically to?

Solution

(i) From the course of QMI we know that a state of the hydrogen atom (ignoring spins) is characterized
by three quantum numbers: n for the energy level, l for the total angular momentum and m for the
projection of the angular momentum on the ẑ-axis. Therefore, not considering super-positions of states,
we can write the state as

|ψ〉 = |n, l,m〉 (3)

(ii) The quantum number for the energy n can take all positive integer values, i.e. n ∈ N; l can take integer
values in [0, n− 1]; lastly, m can take integer values in [−l,+l].
For a fixed l, m has 2l + 1 possibilities. In the same way, for a fixed n, l takes values from 0 to n− 1.
Therefore the degeneracy for a given energy level specified by n is

n−1∑
l=0

(2l + 1) = 2

n−1∑
l=0

(l) + n = 2
(n− 1)n

2
+ n = n2 (4)



(iii) The angular momentum operators for each component are

Using Heisenberg commutation relations

[r̂j , p̂k] = i~δjk1 , r̂ = (x̂, ŷ, ẑ) , p̂ = (p̂x, p̂y, p̂z) (5)

it follows that: [
L̂z, ẑ

]
= 0 (6)

since L̂z does not depend on ẑ or p̂z.[
L̂z, x̂

]
= [x̂p̂y − ŷp̂x, x̂] = 0− [ŷp̂x, x̂] = i~ŷ[

L̂z, ŷ
]

= [x̂p̂y − ŷp̂x, ŷ] = [x̂p̂y, ŷ]− 0 = −i~x̂
(7)

(iv) Let’s calculate the matrix element of r̂ with these information. As we know the action of L̂z on |n, l,m〉
is given by

L̂z |n, l,m〉 = ~m |n, l,m〉 (8)

0 =

〈
n′, l′,m′︸ ︷︷ ︸

ψb

∣∣∣ [L̂z, ẑ] ∣∣∣n, l,m︸ ︷︷ ︸
ψa

〉
=
〈
n′, l′,m′

∣∣∣ [L̂z, ẑ] ∣∣∣n, l,m〉 =
〈
n′, l′,m′

∣∣∣ L̂z ẑ − ẑL̂z ∣∣∣n, l,m〉 =

= ~(m′ −m) 〈n′, l′,m′ | ẑ |n, l,m〉
(9)

Therefore 〈n′, l′,m′ | ẑ |n, l,m〉 can be different from 0 only if m = m′.
Doing the same with the other two commutators we find that:{

i~ 〈n′, l′,m′ | ŷ |n, l,m〉 = ~(m′ −m) 〈n′, l′,m′ | x̂ |n, l,m〉
−i~ 〈n′, l′,m′ | x̂ |n, l,m〉 = ~(m′ −m) 〈n′, l′,m′ | ŷ |n, l,m〉

(10)

The solution found before m′ = m would lead to 〈n′, l′,m′ | x̂ |n, l,m〉 = 〈n′, l′,m′ | ŷ |n, l,m〉 = 0.
Solving this system with m′ 6= m we find that:

~2 〈n′, l′,m′ | ŷ |n, l,m〉 = ~2(m′ −m)2 〈n′, l′,m′ | ŷ |n, l,m〉 (11)

It is true only if:
~2 = ~2(m′ −m)2 ⇐⇒ m′ −m = ±1 (12)

Therefore the conditions to have a non-zero dipole moment expectation value are

m′ −m ≡ ∆m = 0,±1 (13)

(v) The casimir operator is defined as:
L̂

2
= L̂2

x + L̂2
y + L̂2

z (14)

Its action on a state ψ ≡ |n, l,m〉 is given by

L̂
2
|n, l,m〉 = ~2l(l + 1) |n, l,m〉 (15)

To prove the relation we first prove other useful relations. In the following we are going to use Einstein’s
convention with Euclidean metric.[

L̂
2
, L̂j

]
=
[
L̂iL̂i, L̂j

]
= L̂i

[
L̂i, L̂j

]
+
[
L̂i, L̂j

]
L̂i = i~εijk(L̂iL̂k + L̂kL̂i)

symm.
= 0 (16)



where the commutation relation between angular momentum operators has been used:[
L̂i, L̂j

]
= i~εijkL̂k (17)

Lastly: [
L̂i, x̂j

]
= εinm [x̂np̂m, x̂j ] = εinmx̂n [p̂m, x̂j ] = −i~εinmx̂nδmj = i~εijkx̂k (18)

We can now start the computation.[
L̂

2
, x̂n

]
= L̂i

[
L̂i, x̂n

]
+
[
L̂i, x̂n

]
L̂i = i~εinj(L̂ix̂j + x̂jL̂i)

Eq.18
= i~εinj(εijkx̂k + 2x̂jL̂i) =

= 2i~(εijnx̂iL̂j − i~x̂n)
(19)

Therefore: [
L̂

2
, x̂
]

= 2i~(ŷL̂z − ẑL̂y − i~x̂)[
L̂

2
, ŷ
]

= 2i~(ẑL̂x − x̂L̂z − i~ŷ)[
L̂

2
, ẑ
]

= 2i~(x̂L̂y − ŷL̂x − i~ẑ)

(20)

We now calculate the commutator
[
L̂

2
,
[
L̂

2
, ẑ
]]
:[

L̂
2
,
[
L̂

2
, ẑ
]]

=
[
L̂

2
, 2i~(x̂L̂y − ŷL̂x − i~ẑ)

]
Eq.16

= 2i~
([

L̂
2
, x̂
]
L̂y −

[
L̂

2
, ŷ
]
L̂x − i~

[
L̂

2
, ẑ
])

(21)

We analyze the first two terms separately:[
L̂

2
, x̂
]
L̂y = 2i~(ŷL̂z − ẑL̂y − i~x̂)L̂y = 2i~(ŷL̂z − i~x̂)L̂y − 2i~ẑL̂2

y =

Eq.18
= 2i~(L̂z ŷL̂y − ẑL̂2

y)

(22)

For the second one:

−
[
L̂

2
, ŷ
]
L̂x = −2i~(ẑL̂z − x̂L̂z − i~ŷ)L̂x = 2i~(−ẑL̂2

x + x̂L̂zL̂x + i~ŷL̂x) =

Eq.18
= 2i~(L̂zx̂L̂x − ẑL̂2

x)

(23)

Adding them:[
L̂

2
, x̂
]
L̂y −

[
L̂

2
, ŷ
]
L̂x = 2i~(L̂z(x̂L̂x + ŷL̂y)− ẑ(L̂2

x + L̂2
y)) = 2i~(L̂zr̂ · L̂− ẑL̂2

z − ẑL̂
2

+ ẑL̂2
z) (24)

But we have that:
r̂ · L̂ = x̂iL̂i = εijkx̂ix̂j p̂k = 0 (25)

Therefore [
L̂

2
, x̂
]
L̂y −

[
L̂

2
, ŷ
]
L̂x = −2i~ẑL̂

2
(26)

Combining this result with
−i~

[
L̂

2
, ẑ
]

= −i~(L̂
2
ẑ − ẑL̂

2
) (27)

we get from Equation 21 the final result:[
L̂

2
,
[
L̂

2
, ẑ
]]

= 2~2(ẑL̂
2

+ L̂
2
ẑ) (28)

Therefore we can conclude in general that:[
L̂

2
,
[
L̂

2
, r̂
]]

= 2~2(r̂L̂
2

+ L̂
2
r̂) (29)



Note: If we consider instead of r̂ an operator v̂ such that[
L̂i, v̂j

]
= i~εijkv̂k (30)

then the proof is almost identical: the only difference is that in general Equation 25 is not true anymore.
This would lead to an extra term proportional to L̂(v̂ · L̂). Keeping into account the coefficient, the
result reads [

L̂
2
,
[
L̂

2
, v̂
]]

= 2~2(v̂L̂
2

+ L̂
2
v̂)− 4~2L̂(v̂ · L̂) (31)

(vi) We can now use this result to derive the other selection rules.〈
n′, l′,m′︸ ︷︷ ︸

ψb

∣∣∣ [L̂2
,
[
L̂

2
, r̂
]] ∣∣∣n, l,m︸ ︷︷ ︸

ψa

〉
= 2~2

〈
n′, l′,m′

∣∣∣ r̂L̂2
+ L̂

2
r̂
∣∣∣n, l,m〉 =

= 2~4 [l′(l′ + 1) + l(l + 1)] 〈n′, l′,m′ | r̂ |n, l,m〉

(32)

But on the other side:〈
n′, l′,m′

∣∣∣ [L̂2
,
[
L̂

2
, r̂
]] ∣∣∣n, l,m〉 =

〈
n′, l′,m′

∣∣∣ L̂2
[
L̂

2
, r̂
]
−
[
L̂

2
, r̂
]
L̂

2
∣∣∣n, l,m〉 =

= ~2 [l′(l′ + 1)− l(l + 1)]
〈
n′, l′,m′

∣∣∣ [L̂2
, r̂
] ∣∣∣n, l,m〉 =

= ~4 [l′(l′ + 1)− l(l + 1)]
2 〈n′, l′,m′ | r̂ |n, l,m〉

(33)

Therefore the condition to have a non-zero dipole moment is:

2 [l′(l′ + 1) + l(l + 1)] = [l′(l′ + 1)− l(l + 1)]
2 (34)

The term in the bracket on the right can be written as

l′(l′ + 1)− l(l + 1) = (l′ + l + 1)(l′ − l) (35)

The one on the left instead:

2 [l′(l′ + 1) + l(l + 1)] = (l′ + l + 1)2 + (l′ − l)2 − 1 (36)

Therefore the condition in Equation 34 can be written as:[
(l′ + l + 1)2 − 1

] [
(l′ − l)2 − 1

]
= 0 (37)

The second term of the product is 0 only if:

l′ − l = ±1 (38)

The first term is 0 only if l′ = l = 0; the corresponding matrix element is in principle not zero but
direct computation of 〈n′, 0, 0 | r̂ |n, 0, 0〉 shows that this matrix element is indeed vanishing. In fact, the
radial part of the associated wave function does not depend on the angle, while the spherical harmonies
Y 0
0 (θ, φ) is constant: therefore the integration of r on the solid angle gives a vanishing result.

Abbildung 1: Possible transitions.



(vii) The selection rules are {
∆m = 0,±1

∆l = ±1
(39)

The condition on ∆l has an important physical reason. The transition between two energy level happens
through the absorption/emission of a photon which is a spin-1 particle. Therefore the selection rule on
l just reflects angular momentum conservation.

Exercise 65
Show that the life time τ of an atom in an excited state is inversely proportional to the Einstein-coefficient
A of spontaneous emission.

Solution The definition of Einstein coefficient is
dN2

dt
= −A21N2 (40)

where N2 is the number of atoms in the excited level and A21 is the related Einstein coefficient.
The solution is

N2(t) = N2(0)e−A21t (41)
Therefore the lifetime is

τ =
1

A21
(42)

Exercise 66
Consider a two-level system as in the lecture. Write the equations for the occupation number of the lower
level, dNa

dt , and upper level, dNb

dt . Using these, show that Na +Nb = const.

Solution The equations for the occupation numbers of the two levels are given by

dNb
dt

= −NbBbaρ+NaBabρ−NbAab
dNa
dt

= NbBbaρ−NaBabρ+NbAab

(43)

By summing these two equations we obtain

d

dt
(Na +Nb) = 0 =⇒ Na +Nb = const. (44)

Exercise 67
Consider the general Schrödinger equation

i~
∂ψ(q, t)

∂t
= − ~

2m

∂2ψ(q, t)

∂q2
+ V (q)ψ(q, t) (45)

where V is at most quadratic in q. Validate that the Ansatz

ψ(q, t) =
1

N
exp

[
α(t) +

i

~
pcl(t)(q − qcl(t))−

(q − qcl(t))2

2σ2(t)

]
(46)

where pcl = mdqcl
dt leads to an equation of the form

F1(t) + F2(t)(q − qcl(t)) + F3(t)(q − qcl(t))2 = 0 (47)

Show that

F1 = 0 ≡ dα

dt
=
i

~
(
p2cl
2m
− V (qcl))−

i~
2mσ2(t)

F2 = 0 ≡ dpcl
dt

= −∂V
∂q

(qcl)

F3 = 0 ≡ dσ2

dt
=
i~
m
− i

~
∂2V

∂q2
σ4

(48)



Solution Substituting the ansatz for ψ(q, t) into (43) and using pcl dqcldt = pcl
m one obtains

0 =
ψ(q, t)

2mσ4

[
−~2σ2 + p2clσ

4 − 2mV (q)σ4 + 2i~m
dα

dt
σ4 − 2mσ4 dpcl

dt
(q − qcl) + (~2 + 2i~mσ

dσ

dt
)(q − qcl)2

]
(49)

Since ψ(q,t)
2mσ4 6= 0, it follows

−~2σ2 + p2clσ
4 − 2mV (q)σ4 + 2i~m

dα

dt
σ4 − 2mσ4 dpcl

dt
(q − qcl) + (~2 + 2i~mσ

dσ

dt
)(q − qcl)2 = 0 (50)

Expanding V (q) around qcl we obtain

V (q) = V (qcl) +
dV

dq
(q − qcl) +

1

2

d2V

dq2
(q − qcl)2 (51)

Note that all higher derivatives of V vanish since V is at most quadratic in q. Following this, let’s collect all
the terms

F1(t) = −~2σ2 + p2clσ
4 − 2mV (qcl)σ

4 + 2i~m
dα

dt
σ4

F2(t) = −2mσ4 dpcl
dt
− 2mσ4 dV

dq

F3(t) = ~2 + 2i~mσ
dσ

dt
−mσ4 d

2V

dq2

(52)

Then, the equation (50) becomes

F1(t) + F2(t)(q − qcl(t)) + F3(t)(q − qcl(t))2 = 0 (53)

Now from the condition F1 = F2 = F3 = 0 the proposition given by (48) follows.

General information
The lecture takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

The central tutorial takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II


