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Exercise 58 - Short questions

(i) Name at least four physical e�ects which can be explained with quantum mechanics and not with
classical mechanics.

(ii) Suppose you are given a Hamiltonian of a free particle. What are the main things you should do in
order to quantize the system?

(iii) Which of the following operators are Hermitian? Position operator, momentum operator, annihilation
operator (de�ned in the analysis of harmonic oscillator), Hamiltonian. Give another example of a
non-Hermitian operator.

(iv) Simplify the following expression
[p̂q̂, q̂2] (1)

(v) What property does an operator have to satisfy to correspond to a physical observable? Why?

(vi) Give an example of compatible operators (i.e. those who's commutator vanishes). What does this
imply for the eigenvectors of the operators if the operators have non-degenerate eigenvalues? Why?

(vii) Show that the hermicity of Hamilton operator follows from the unitarity of the time-evolution operator.

(viii) Consider a system of two pendulums of length l on whose ends are attached balls of mass m. Suppose
that these two balls are connected via weak spring k. (Figure 1.) The Lagrangian of the system is
then given by

L =
1

2
ml2θ̇21 +

1

2
ml2θ̇22 −

1

2
mglθ21 −

1

2
mglθ22 −

1

2
kl2(θ2 − θ1)2 (2)

Find the normal coordinates in terms of θ1 and θ2. What is the spectrum of the Hamiltonian after
quantization?

Figure 1: Pendulums connected via spring.

(ix) Suppose we have 2 systems which in the beginning do not interact. Then they interact and at some
point stop interacting again. Can we write the wave function of the full system as a product of wave
functions of �rst and second system after they stop interacting?

(x) Consider a particle in a potential V̂ . How can you interpret the zeroth, �rst and second order of the
perturbation expansion of the propagator K(f, i)? Write them down.



Solutions

(i) Black body radiation, Photoelectric e�ect, Hydrogen atom, Stern Gerlach experiment...

(ii) Put hats and postulate canonical commutation relations.

(iii) All but annihilation operator.

(iv)
[p̂q̂, q̂2] = [p̂, q̂2]q̂ = −2i~q̂2 (3)

(v) It has to be hermitian because then it's eigenvalues are real.

(vi) Hamiltonian and number operator of harmonic oscillator are commuting. They have common eigen-
vectors. One more example would be the commutator

[
Lx, L

2
]

= 0 where L is angular momentum
operator. For the derivation of this result see exercize 22.

(vii) exercise 35

(viii) The angles in the Lagrangian are clearly coupled. In order to describe the system in an easier way it
is therefore convenient to introduce normal coordinates which decouple the system into two harmonic
oscillators. By observing the Lagrangian, one can easily see that this can be done by de�ning

ζ1 =
1√
2

(θ1 + θ2) ζ2 =
1√
2

(θ1 − θ2) (4)

Substituting this in the Lagrangian we obtain

L =
1

2
ml2ζ̇21 +

1

2
ml2ζ̇22 −

1

2
mglζ21 −

1

2
mglζ22 − kl2ζ22 (5)

Clearly, we now have a system of two decoupled harmonic oscillators. It is convenient to normalize the
coordinates such that in front of the velocities we have just a factor of 1

2 . De�ning

ζ̃1 =
√
mlζ1 ζ̃2 =

√
mlζ2 (6)

we obtain a system represented by two harmonic oscillators

L =
1

2
˙̃
ζ21 −

1

2
ω2
1 ζ̃

2
1 +

1

2
˙̃
ζ22 −

1

2
ω2
2 ζ̃

2
2 (7)

with frequencies ω1 =
√

g
l and ω2 =

√
g
l + 2k

m .

From here, one can easily see following the analysis similar to a one dimensional harmonic oscillator,
that the energy spectrum corresponding to this system is given by

En1,n2 = En1 + En2

En1 = ~ω1(n1 +
1

2
) En2 = ~ω2(n2 +

1

2
)

(8)

(ix) No, because we have an entangled state.

(x) In the Problem sheet 8, ex. 48 we have derived the following expressions which we can interpret as

K(f, i) = K0(f, i) +K1(f, i) +K2(f, i) + ...

K0(f, i) =

∫ qf

qi

Dqe i~S0

K1(f, i) = − i
~

∫ tf

ti

dtI

∫
dqIK0(f, I)V (I)K0(I, i)

K2(f, i) = − 1

~2

∫ tf

ti

dtII

∫ tII

ti

dtI

∫
dqII

∫
dqIK0(f, II)V (II)K0(II, I)V (I)K0(I, i)

(9)

We can interpret zeroth order K0(f, i) as no scattering between particle and potential, because this is
just the propagator of a free particle from initial to �nal state. The �rst correction can be interpreted
as following - the particle freely moves until it scatters one time with the potential. After this it moves
freely until �nal state. Finally, the second correction, K2(f, i) we can interpret as particle scattering
of a potential two times.



Exercise 59 - Quantization

Consider a classical scalar �eld theory with the Lagrangian density (we are using the mostly minus metric)

L =
1

2

(
∂µφ∂νφη

µν −m2φ2
)
. (10)

(i) Find the conjugate momenta and the Hamiltonian density.

(ii) Find the equation of motion and by Fourier expanding the �eld as

φ(t,x) =

∫
d3k

(2π)3/2
eik.xφk(t), (11)

show that the dispersion relation is ω2
k = k2 + m2. What property does φk(t) have under complex

conjugation?

We can de�ne the equal time Poisson bracket for two functionals f and g as

{f(t,x), g(t,y)} =

∫
d3z

(
δ f(t,x)

δφ(t, z)

δ g(t,y)

δπ(t, z)
− δ g(t,y)

δφ(t, z)

δ f(t,x)

δπ(t, z)

)
. (12)

(iii) Find the equal time Poisson brackets of all combinations of φ and π.

(iv) We can de�ne

ak(t) =

∫
d3x

(2π)3/2
a(x)e−ik.x =

∫
d3x

(2π)3/2
e−ik.x

√
ωk
2

(
φ(t,x) +

i

ωk
π(t,x)

)
(13)

and the corresponding complex conjugate a∗k(t). Use your result of the previous question to �nd the
equal time Poisson brackets of all combinations of ak(t) and a∗k(t).

(v) Find the equations of motion of ak(t) and a∗k(t) and show that

ak(t) = ake
−iωkt and a∗k(t) = a∗ke

iωkt (14)

Use this to show that we can write the �eld as

φ(t,x) =

∫
d3k

(2π)3/2
√

2ωk

(
ak(t)eik.x + ak(t)∗e−ik.x

)
=

∫
d3k

(2π)3/2
√

2ωk

(
ake
−ik.x + a∗ke

ik.x
)
,

(15)

where k.x = ωt− k.x.

(vi) So far everything has been done classically. What do we have to do to move to the quantum picture?
Write down all the Poisson brackets you calculated in the quantum picture. What is di�erent?

(vii) Show that the Heisenberg equation reproduces the equations of motion of the classical system for φ
and π in the quantum mechanical picture.

Solution

(i) By de�nition the canonical momentum is

π(t,x) =
∂L

∂φ̇(t,x)
= φ̇(t,x). (16)

and the Hamiltonian density,

H =
1

2

(
π2 − ∂iφ∂iφ+m2φ2

)
. (17)



(ii) Either by directly using

∂µ
∂L

∂(∂µφ)
− ∂L
∂φ

= 0 (18)

or using

∂tπ = −∂H
∂φ

+ ∂i
∂H

∂(∂iφ)
(19)

we �nd the equation of motion
∂µ∂

µφ+m2φ = 0 (20)

By applying the equation of motion to the Fourier expansion,

d2φk
dt2

+ (k2 +m2)φk = 0, (21)

which is the equation of motion of the harmonic oscillator with dispersion relation

ωk =
√
k2 +m2. (22)

As the �eld φ(t,x) is real we see from the Fourier decomposition that φ∗k = φ−k.

(iii) Using the de�nition of the Poisson bracket,

{φ(t,x), π(t,y)} =

∫
d3zδ3(x− z)δ3(y − z) = δ3(x− y)

{φ(t,x), φ(t,y)} = {π(t,x), π(t,y)} = 0.

(23)

(iv) We can use the result of the previous question to �nd

{ak(t), a∗p(t)} =

∫
d3x

(2π)3/2
d3y

(2π)3/2
e−ik.xe+ip.y

√
ωkωp

4

[
i

ωk
{π(t,x), φ(t,y)} − i

ωp
{φ(t,x), π(t,y)}

]
=

∫
d3x

(2π)3/2
d3y

(2π)3/2
e−ik.xe+ip.y

√
ωkωp

4

[
− i

ωk
− i

ωp

]
δ3(x− y)

=

∫
d3x

(2π)3
e−i(k−p).x

√
ωkωp

4

[
− i

ωk
− i

ωp

]
= −iδ3(k − p).

(24)

Similarly,
{ak(t), ap(t)} = {a∗k(t), a∗p(t)} = 0. (25)

(v) The equation of motion is given by

ȧk(t) = −{H, ak(t)}

= −
∫

d3x

(2π)3/2
e−ik.x

√
ωk
2

(
{H,φ(t,x)}+

i

ωk
{H,π(t,x)}

)
,

(26)

where

{H,φ(t,x)} = −π(t,x),

{H,π(t,x)} =

∫
d3z δ3(x− z)

δ H

δφ(t, z)

=

∫
d3yδ3(x− y)(−∆ +m2)φ(t,y)

= (k2 +m2)φ(t,x)

= ω2
kφ(t,x)

(27)

Hence we have

ȧk(t) = −
∫

d3x

(2π)3/2
e−ik.x

√
ωk
2

(−π(t,x) + iωkφ(t,x))

= −iωkak(t),

(28)



which is easily solved to give the solutions stated in the question.
By substitution we can show

φ(t,x) =

∫
d3k

(2π)3/2
√

2ωk

(
ak(t)eik.x + ak(t)∗e−ik.x

)
=

∫
d3k

(2π)3/2
√

2ωk

d3y

(2π)3/2

√
ωk
2

×
[
eik.(x−y)

(
φ(t,y) +

i

ωk
π(t,y)

)
+ e−ik.(x−y)

(
φ(t,y)− i

ωk
π(t,y)

)]
=

∫
d3y δ3(x− y)φ(t,y)

= φ(t,x).

(29)

(vi) We have basically done all the work, we can move to the quantum picture simply by promoting φ and
π to operators and replacing the Poisson bracket with the commutator,

φ(t,x)→ φ̂(t,x)

π(t,x)→ π̂(t,x)

{ . , . } → −i[ . , . ].

(30)

The commutators in of the �eld operator and the conjugate momentum become[
φ̂(t,x), π̂(t,y)

]
= iδ3(x− y)[

φ̂(t,x), φ̂(t,y)
]

= [π̂(t,x), π̂(t,y)] = 0.
(31)

And the commutators of the Fourier operators become[
âk(t), â†p(t)

)
] = δ3(k − p)

[âk(t), âp(t)] =
[
â†k(t), â†p(t)

]
= 0.

(32)

(vii) Starting from the Heisenberg equation of motion, with the quatized Eq. 17, for π̂,

d

dt
φ̂(t,x) = i

[∫
d3y Ĥ(t,y), φ̂(t,x)

]
= i

∫
d3y

[
1

2

(
π̂2 − ∂iφ̂∂iφ̂+m2φ̂2

)
(t,y), φ̂(t,x)

]
=
i

2

∫
d3y

[
π̂2(t,y), φ̂(t,x)

]
= i

∫
d3y

[
π̂(t,y), φ̂(t,x)

]
π̂(t,y)

= i

∫
d3y

(
−iδ3(x− y)

)
π̂(t,y)

= π̂(t,x).

(33)

And similarly for π̂,

d

dt
π̂(t,x) = i

[∫
d3y Ĥ(t,y), π̂(t,x)

]
= i

∫
d3y

[
1

2

(
π̂2 − ∂iφ̂∂iφ̂+m2φ̂2

)
(t,y), π̂(t,x)

]
=
i

2

∫
d3y

[(
−∂iφ̂∂iφ̂+m2φ̂2

)
(t,y), π̂(t,x)

]
= i

∫
d3y

(
−∂(y),iφ̂(t,y) ∂i(y)

[
φ̂(t,y), π̂(t,x)

]
+m2φ̂(t,y)

[
φ̂(t,y), π̂(t,x)

])
= i

∫
d3y

(
−∂(y),iφ̂(t,y) ∂i(y)(iδ

3(x− y)) +m2φ̂(t,y)iδ3(x− y)
)

= −∂i∂iφ̂(t,x)−m2φ̂(t,x)

=⇒ ∂µ∂
µφ̂+m2φ̂ = 0.

(34)



Exercise 60 - Density matrix in 2-dimensions and Bloch Sphere

We are going to discuss the density matrix formalism in the case of a 2-dimensional Hilbert space; as a
physical example, it corresponds to the Hilbert space of a spin 1/2 particle.

(i) First of all, let's see how a state looks like. Prove that a generic normalized state (i.e. a ray-vector of
the Hilbert space) can be written as

|ψ〉 = cos

(
θ

2

)
| 0〉+ eiφ sin

(
θ

2

)
| 1〉 with θ ∈ [0, π] , φ ∈ [0, 2π] (35)

where | 0〉 , | 1〉 are the eigenvectors of the Pauli matrix σ̂3 (the choice of σ̂3 is purely conventional).
Show that this means that the 2-dimensional Hilbert space of normalized states is isomorphic to the
2-Sphere S2. In this geometric picture every state |ψ〉 is a point of S2: in this context, the sphere is
called Bloch Sphere.

(ii) Let's try now to enlarge our view considering also mixed states. To do that, we want to study �rst
how a general density matrix looks like. Recalling that {1,σ} (where σ = (σ̂1, σ̂2, σ̂3)) form a basis
for the operators in a 2-dimensional Hilbert space, it means that the most general operator is of the
form:

ρ̂α,β = α1+ β · σ (36)

Recalling the properties of a density matrix, �nd conditions on α,β to make ρ̂ a density matrix.

You should �nd:

ρ̂r =
1

2
(1+ r · σ) with |r| ≤ 1 r ∈ R3 (37)

Therefore, all states (pure and mixed) live within the interior of the Bloch Sphere.

(iii) For which r does ρ̂ represent a pure state? And a mixed one? Would you expect this from what you
had found in part (i)?

(iv) Show that two orthonormal vectors are located at antipodal points on the Bloch sphere.

(v) Consider the Hamilton operator Ĥ = aB · σ. Compute its expectation value in the state given by ρ̂r.

(vi) For which value of r does ρ̂r correspond to a spin one-half particle which is randomly produced with
probability 1/2 in the state | 0〉 and with probability 1/2 in the state | 1〉? What is the the entropy in
this case?

(vii) A density matrix is said to be describing a maximally entangled state if it has maximum entanglement
entropy (or Von Neuman entropy). What is the maximum entanglement entropy in this case? To
which r (i.e. which point(s) in the Bloch Sphere) does it correspond?

(viii) Consider now spin one-half particles which are produced with spins in any direction with equal prob-
ability. Calculate the density matrix.

Solution

(i) Since {| 0〉 , | 1〉} is an orthonormal basis for the Hilbert space, a generic normalized state is of the form:

|ψ〉 = a | 0〉+ b | 1〉 with |a|2 + |b|2 = 1 (38)

This means that we can write

a = eiα cos

(
θ

2

)
, b = eiβ sin

(
θ

2

)
with α, β ∈ [0, 2π] , θ ∈ [0, π] (39)

Using the fact that the state is de�ned as a ray-vector in the Hilbert space we can factor out an overall
phase and get the desired result:

|ψ〉 = eiα cos

(
θ

2

)
| 0〉+ eiβ sin

(
θ

2

)
| 1〉 = eiα

(
cos

(
θ

2

)
| 0〉+ ei(β−α) sin

(
θ

2

)
| 1〉
)

∼ cos

(
θ

2

)
| 0〉+ eiφ sin

(
θ

2

)
| 1〉 with φ = (β − α) ∈ [0, 2π]

(40)



Since φ is periodic (as it can be checked from the state) and it is degenerate for θ = 0, π, it means that
these coordinates actually describe S2.
This is how the Bloch Sphere looks like.

Figure 2: Representation of the Bloch Sphere.

(ii) From the condition of hermitianicity follows, since 1 and Pauli matrices are hermitian, that α,β are
real.
Furthermore:

1
!
= tr ρ̂ = α tr1+ β · trσ = 2α (41)

since trσi = 0 i = 1, 2, 3. It follows that α = 1
2 .

Finally, since (β ·σ)2 = |β|2, it follows that the eigenvalues of β ·σ are ±|β|. Therefore, the eigenvalues
of ρ̂ are:

ρ+,− =
1

2
± |β| (42)

Since 0 ≤ ρ+,− ≤ 1, it follows that |β| ≤ 1
2 .

De�ning r = 2β, we �nd the announced result:

ρ̂r =
1

2
(1+ r · σ) with |r| ≤ 1 (43)

(iii) For a pure state we have ρ̂2 = ρ̂; therefore

ρ̂2 =
1

4

[
1+ 2r · σ + (r · σ)2

]
=

1

4

[
1(1 + |r|2) + 2r · σ

]
= ρ̂ ⇐⇒ |r| = 1 (44)

It follows that pure states live on the Bloch Sphere (as found in point (i)). On the other hand, it
follows that mixed states live in the interior of the sphere with |r| < 1.

(iv) Let's take two orthogonal states | r+〉 , | r−〉; since they are pure states, to each of them is associated a
vector r+, r− s.t. |r+| = |r−| = 1.

〈r+ | r−〉 = 0 ⇒ | r+〉 〈r+ | r−〉 〈r− | = 0 ⇐⇒ ρ̂r+ ρ̂r− = 0 ⇐⇒

⇐⇒ 1

4
[1+ (r+ + r−) · σ + (r+ · σ)(r− · σ)] = 0

(45)

This implies that: tr (ρ̂r+ ρ̂r−) = 0. Using the fact that trσi = 0 and σiσj = δij1 + iε k
ij σk (and

therefore tr (σiσj) = 2δij):

0 = tr (ρ̂r+ ρ̂r−) =
1

4

[
2 + 0 + tr(ri+r

j
−σiσj)

]
=

1

4

[
2 + ri+r

j
−2δij

]
=

1

2
[1 + r+ · r−]

⇐⇒ r+ · r− = −1
(46)

This means that they are anti-parallel, i.e. the corresponding states are in antipodal points in the
Bloch Sphere.

(v)

〈H〉r = tr (Ĥρ̂r) =
a

2
tr [B · σ + (B · σ)(r · σ)] =

a

2
[0 + 2B · r] = aB · r (47)



Just to understand better the physical correspondence with a spin 1/2 particle, notice that following
the same calculation we have that for a pure state:

〈r · σ̂〉r = tr ((r · σ̂)ρ̂r) = ... = r · r = 1 (48)

This means that ρ̂r describe a pure state of a particle with spin in direction r.

(vi) This case corresponds to the ensemble {(1/2, | 0〉); (1/2, | 1〉)}. The corresponding density matrix is:

ρ̂ =
1

2
| 0〉 〈0 |+ 1

2
| 1〉 〈1 | = 1

2
1 =⇒ r = 0 (49)

Given the probabilities of the ensemble {pk}k∈N, the entropy is given by: S = −
∑
k

pk log(pk). In this

case p0, p1 = 1/2 and therefore S = log(2).

(vii) The maximum entropy is achieved when all states have equal probability 1/dimension and this is the
case of the previous point. It follows that in general the maximally entangled states lay at r = 0.

(viii) As it has been shown in (i) a particle produced in direction θ, φ is described by the state:

| θ, φ〉 = cos

(
θ

2

)
| 0〉+ eiφ sin

(
θ

2

)
| 1〉 (50)

The density matrix describing this state is:

ρ̂θ,φ = | θ, φ〉 〈θ, φ | =
(

cos 2 (θ/2) cos (θ/2) sin (θ/2)e−iφ

cos (θ/2) sin (θ/2)eiφ sin 2 (θ/2)

)
(51)

Note: it corresponds to the case with r = (sin (θ) cos (φ), sin (θ) sin (φ), cos (θ)), that is just a vector
in spherical coordinate on S2.

The probability density of being produced in one particular direction is 1/4π, that is, the inverse of
the surface of S2.
The density matrix of particle produced in all directions with equal probability can be calculated as
in the discrete case replacing the sum with the integral over the sphere:

ρ̂ =

∫
S2

pθ,φ | θ, φ〉 〈θ, φ | =
∫
S2

1

4π
| θ, φ〉 〈θ, φ | =

=
1

4π

π∫
0

dθ sin (θ)

2π∫
0

dφ

(
cos 2 (θ/2) cos (θ/2) sin (θ/2)e−iφ

cos (θ/2) sin (θ/2)eiφ sin 2 (θ/2)

)
=

=
2π

4π

π∫
0

dθ sin (θ)

(
cos 2 (θ/2) 0

0 sin 2 (θ/2)

)
=

1

2
1

(52)

Therefore, as it could be expected since the amount of information is minimal, it describes a maximally
entangled state.

Exercise 61 - Time dependent two level system

Consider a two level system with orthonormal basis (ONB) | 1〉,| 2〉. The Hamiltonian is

H = H0 + V (t) (53)

where

H0 =

(
E1 0
0 E2

)
, V (t) =

(
0 δeiωt

δe−iωt 0

)
(54)

(i) Write down an equation for the time evolution in the interaction picture. Spell it out in components.
You obtain a system of two coupled di�erential equations.

Hint: Write |ψ(t)〉I as |ψ(t)〉I = c1(t) | 1〉+ c2(t) | 2〉 (two level system).



(ii) Show that one can eliminate c1(t) to obtain a di�erential equation for c2(t).

(iii) At t = 0 the system is in state | 1〉. Show that the above equation is solved by

c2(t) = Ae−it(ω−ω21)/2sin(Ωt) (55)

where A is a normalization constant, ω21 = (E2 − E1)/~ and

Ω2 = δ2/~2 +
(ω − ω21)2

4
(56)

(iv) Compute c1(t) and A.

(v) What is the probability to �nd the system in state | 2〉 after the time t? Determine also the maximum
(over t) probability.

(vi) Compute the previous transition probability in �rst order perturbation theory, taking into account
again that at t = 0 the system is in state | 1〉. Then compare to the exact result. In which case do the
results agree?

Solution

(i) In the interaction picture holds:

i~∂t |ψ(t)〉I = VI(t) |ψ(t)〉I (57)

where
VI(t) = e

i
~H0tV (t)e−

i
~H0t (58)

and
|ψ(t)〉I = e

i
~H0t |ψ(t)〉S (59)

Let |ψ(t)〉I = c1(t) | 1〉+ c2(t) | 2〉 =
∑
n cn(t) |n〉, as corresponds to a two level system. Therefore we

can now just replace, obtaining:

i~∂t
∑
n

cn(t) |n〉 = e
i
~H0tV (t)e−

i
~H0t

∑
n

cn(t) |n〉 (60)

Acting with 〈m | on the LHS on the previous equation, we get:

i~ ˙cm(t) = e
i
~Emt

∑
n

〈m |V (t) |n〉 cn(t)e−
i
~Ent (61)

In the basis

| 1〉 =

(
1
0

)
, | 2〉 =

(
0
1

)
(62)

we straightforwardly obtain:

i~ċ1(t) = e
i
~E1tδeiωtc2(t)e−

i
~E2t =: δei(ω−ω21)tc2(t) (63)

i~ċ2(t) = e
i
~E2tδe−iωtc1(t)e−

i
~E1t =: δe−i(ω−ω21)tc1(t) . (64)

(ii) De�ning ω̃ = ω − ω21 and di�erentiating with respect to the time (64), we get:

ċ1(t) =
i~
δ

[c̈2(t) + iω̃ċ2(t)]eiω̃t (65)

Replacing it in (63), we �nally obtain:

c̈2(t) + iω̃ċ2(t) +
δ2

~2
c2(t) = 0 . (66)



(iii) Use the logical ansatz c2(t) = Ae−
itω̃
2 sinΩt, di�erentiate it twice and replace in (66), taking into

account that c2(0) = 0:

− ω̃
2

4
sinΩt− iω̃ΩcosΩt− Ω2sinΩt+

δ2

~2
sinΩt+

ω̃2

2
sinΩt+ iω̃ΩcosΩt

!
= 0 =⇒ Ω2 =

δ2

~2
+
ω̃2

4
(67)

(iv) From

c1(t) =
i~
δ
ċ2(t)eiω̃t =

i~
δ
Ae

iω̃t
2 [ΩcosΩt− iω̃

2
sinΩt] (68)

and |c1|2 + |c2|2 = 1 evaluated, without loss of generality and for the sake of laziness, at t = 0 (recall
c2(0) = 0), we obtain directly:

|c1(0)|2 !
= 1 =⇒ A =

√
δ2

δ2 + ω̃2~2

4

(69)

(v) The probability to �nd the system in | 2〉 is given by:

P (| 2〉 , t) = |c2(t)|2 = A2sin2Ωt (70)

and its maximum is therefore reached whenever

t = tn =
1

Ω

(π
2

+ nπ
)

n ∈ N (71)

implying:

Pmax = A2 =
δ2

δ2 + ω̃2~2

4

≤ 1 (72)

(vi) Plugging in V21 = δe−iωt in (c.f. equation 34 exercise 55):

P1→2(t) =
1

~2

∣∣∣∣∣
∫ T

0

dtIV21e
iω21tI

∣∣∣∣∣
2

(73)

we obtain:

P1→2(t) =
4δ2

~2(ω21 − ω)2
sin2

(ω21 − ω)2t

2
(74)

As a consequence, we observe that both results agree for small perturbations. Concretely, this means
that δ has to be small, or more precisely

δ2 � (ω − ω21)2
~2

4
(75)

This means that Ω ∼ |ω − ω21|/2 and the result agrees.

Exercise 62 - Scattering

The scattering amplitude in the �rst Born approximation is given by

f(ϑ, ϕ) = − m

2π~2

∫
d3rei(k−k

′)·rV (r). (76)

Here k is the wave vector of the incoming wave and k′ is the wave vector of the outgoing wave.



(i) Consider a spherically symmetric potential V (|r|). Simplify the formula in the �rst Born approxima-
tion, i.e. integrate over all angles.

(ii) What is the energy of the incoming wave in terms of k? Consider the low energy limit of the scattering
amplitude. Show that the expression for it is to the leading order

f = −2m

~2

∫ ∞
0

r2V (r)dr. (77)

(iii) Consider now the spherically symmetric potential well of depth V0 and radius a, i.e. a potential

V (r) =

{
−V0 |r| < a

0 |r| > a.
(78)

What is the scattering amplitude in this case and what is the total cross section (still in the low energy
limit)?

Solution

(i) First of all, we can introduce spherical coordinates centered at the origin and such that the z-axis
agrees with the direction of the vector k − k′. In that case we have

f(ϑ, ϕ) = − m

2π~2

∫ ∞
0

r2dr

∫ π

0

sinϑdϑ

∫ 2π

0

dϕV (r)ei|k−k
′|r cosϑ (79)

= −m
~2

∫ ∞
0

r2V (r)dr

∫ +1

−1
dyei|k−k

′|ry (80)

= −m
~2

∫ ∞
0

r2V (r)dr

[
ei|k−k

′|ry

i|k − k′|r

]+1

−1

(81)

= − 2m

~2|k − k′|

∫ ∞
0

rV (r) sin(|k − k′|r)dr. (82)

(ii) The energy of the incoming wave is
~2|k|2

2m
(83)

so the low energy limit is the limit where |k| → 0. We can thus replace the factor

sin(|k − k′|r)
|k − k′|

' r (84)

and we immediately �nd the expression in the question.

(iii) Since the potential is constant, we have

f =
2mV0
~2

∫ a

0

r2dr =
2ma3V0

3~2
. (85)

The total cross section is obtained by integrating the di�erential cross section |f |2 over all spherical
angles. Since f does not depend on the angles, we �nd

σ =
16πm2a6V 2

0

9~4
. (86)

Exercise 63 - Propagator of the harmonic oscillator

In this exercise we want to calculate the propagator of the harmonic oscillator explicitly. Remember that
the propagator is given by:

K(qF , tF ; qI , tI) = lim
N→∞

∫
dq2...dqNdp1...dpN

N∏
j=1

〈qj+1 | pj〉 〈pj | qj〉 e−
i
~ εH(pj ,qj ,t+(j−1)ε) (87)

with the Hamiltonian of the harmonic oscillator given by:

H(p, q) =
1

2m
p2 +

mω2

2
q2 (88)



(i) Consider the sequence of N ×N matrices MN+1 given by

MN+1 =



α −1 0 0 ... 0
−1 α −1 0 ... 0
0 −1 α −1 ... 0
...

. . .
...

0 0 0 −1 α −1
0 0 0 0 −1 α


(89)

Show that det(MN+1) = α det(MN )− det(MN−1).

(ii) Now assume that det(MN ) = f(εN) and α = 2− ε2ω2.
Show that for ε→ 0,

f ′′(εN) = −ω2f(εN) with f(0) = 0, f ′(0) =
1

ε
(90)

follows from the result of (i).

(iii) Setting ε = tF−tI
N show that in the limit N →∞ we have

ε det(MN )→ 1

ω
sin(ω(tF − tI)); det(MN )− det(MN−1)→ cos(ω(tF − tI)) (91)

(iv) Perform the gaussian integration of p in (87) to write the propagator as

K(qF , tF ; qI , tI) = lim
N→∞

( m

2πi~ε

)N/2 ∫
dq2...dqNe

im
2~ε (q

2
F+q2I−2qNqF−2q2qI+

∑N
ij=2(MN )ijqiqj−ε2ω2q2I ) (92)

Hint: You may use the formula for n dimensional gaussian integration given in exercise 45.

(v) Perform the Gaussian integration over q and check if the result coincides with the one obtained in
Exercise 45.

Solution

(i)

MN+1 =


α −1 0 ... 0
−1
... MN

0

 =


α −1 0 ... 0
−1 α −1 ... 0
... −1 MN−1

0
...


Therefore the determinant is given by

det(MN+1) = α det(MN ) +

∣∣∣∣∣∣
−1 −1 0
0 MN−1
0

∣∣∣∣∣∣ = α det(MN )− det(MN−1)

(ii) Plugging α and f into the equation for the determinant we get:

f(ε(N + 1)) = (2− ε2ω2)f(εN)− f(ε(N − 1))

⇔ −ω2f(εN) =
f(ε(N + 1)) + f(ε(N − 1))− 2f(εN)

ε2
= f ′′(εN)

The last step can be seen be using the de�nition of the derivative f ′(εN) = f(ε(N+1))−f(εN)
ε .

To show that the boundary conditions are ful�lled automatically we use the iterative relation for the
determinant for N = 1:

det(M2) = α = α det(M1)− det(M0)︸ ︷︷ ︸
=0

⇔ det(M1) = 1

⇒f(0) = 0; f ′(0) =
f(1)− f(0)

ε
=

1

ε



(iii) The general solution to the di�erential equation is given by:

f(εN) = A sin(εωN) +B cos(εωN)

And plugging in the boundary conditions we get f(εN) = 1
ωε sin(ωεN) and therefore we get

εdet(MN )→ 1

ω
sin(ω(tF − tI))

det(MN )− det(MN−1) =
sin(ωεN)− sin(ωε(N − 1))

ωε
→ cos(ω(tF − tI))

(iv) The propagator is given by:

K(qF , tF ; qI , tI) =
1

(2π~)N

∫
dq2...dqNdp1...dpN

N∏
j=1

e
i
~pj(qj+1−qj)− i

~ ε
(

1
2mp

2
j+

mω2

2 q2j

)

=
1

(2π~)N

∫
dq2...dqNe−

iεmω2

2~
∑N
j=1 q

2
j

∫
dp1...dpNe

∑N
j=1(− iε

2~mp
2
j+

i
~pj(qj+1−qj))

=

√( m

2πi~ε

)N ∫
dq2...dqNe

im
2~ε

∑N
j=1((qj+1−qj)2−ε2ω2q2j )

where in the last step we used the relation for integrating an N dimensional gaussian integral which
was derived in problem set 7. Now we consider that the integration is done only over dq2...dqN . In
the exponential however terms with q1 = qI and qN+1 = qF show up. Therefore we can rewrite the
exponential as:

K(qF , tF ; qI , tI) =

√( m

2πi~ε

)N ∫
dq2...dqNe

im
2~ε (q

2
F+q2I−2qNqF−2q2qI+

∑N
ij=2(MN )ijqiqj−ε2ω2q2I )

(v) The exponent can be rearranged in the following way

K(qF , tF ; qI , tI) =

√( m

2πi~ε

)N
e
im
2~ε (q

2
F+q2I−ε

2ω2q2I )

∫
dq2...dqNe

im
2~ε (−2q2qI−2qNqF+

∑N
ij=2(MN )ijqiqj)

=

√( m

2πi~ε

)N
e
im
2~ε (q

2
F+q2I−ε

2ω2q2I )

∫
dq2...dqNe

im
2~ε q

TMNq− im~ε q
Tu

with u2 = −qI , uN = −qF and all the other entries ui = 0. Then we can apply gaussian integration
and get

K(qF , tF ; qI , tI) =

√( m

2πi~ε

)N√ (2π~iε)N−1
mN−1 det(MN )

e
im
2~ε (q

2
F+q2I−ε

2ω2q2I )e−
im
2~ε (q

2
I (M

−1
N )22+q

2
F (M−1

N )NN+2qIqF (M−1
N )2N )

=

√
mω

2πi~ sin(ω(tF − tI))
e
im
2~ε ((1−(M

−1
N )NN )q2F+(1−(M−1

N )22)q
2
I−2qIqF (M−1

N )2N−ε2ω2q2I )

The inverse elements of a Matrix can be computed with the formula (A−1)ij = 1
det(A) (−1)i+j det(Ãij)

where Ãij is the matrix A with the j-th row and the i-th column erased. Now we can calculate the
inverse matrix elements in the exponent:

(M−1N )2N =
1

det(MN )
(−1)N

∣∣∣∣∣∣∣∣∣∣
1− α ... 0

0
. . .

...
... 0

. . . α
0 ... 0 −1

∣∣∣∣∣∣∣∣∣∣
=

1

det(MN )
(−1)N (−1)N−2 =

1

det(MN )
→ ωε

sin(ω(tF − tI))

(M−1)22 = (M−1)NN =
det(MN−1)

det(MN )
→ 1− ωε cos(ω(tF − tI))

sin(ω(tF − tI))

Plugging this into the exponent in the propagator we get:

K(qF , tF ; qI , tI) =

√
mω

2πi~ sin(ω(tF − tI))
exp

{
imω

2~ sin(ω(tF − tI))
(
(q2F + q2I ) cos(ω(tF − tI))− 2qF qI

)}
where we omitted the term proportional to ε as it vanishes in the limit ε→ 0.


