Exercises on Quantum Mechanics II (TM1/TV)

Problem set 9, discussed December 16 - December 20, 2019

Exercise 53 (central tutorial)

In this exercise we will analyse another way of doing time-dependent perturbation theory, in which we will use the interaction picture. Let's consider a system with the Hamiltonian $\hat{H}=\hat{H}_{0}+\hat{V}(t)$ where $\hat{V}(t)$ is small.
(i) How is the time-evolution operator in the interaction picture defined?
(ii) Show that the time-evolution operator in the interaction picture satisfies the integral equation

$$
\begin{equation*}
\hat{U}_{I}\left(t, t_{i}\right)=1-\frac{i}{\hbar} \int_{t_{i}}^{t} \hat{V}_{I}\left(t^{\prime}\right) \hat{U}_{I}\left(t, t_{i}\right) d t^{\prime} \tag{1}
\end{equation*}
$$

with initial conditions $\hat{U}_{I}\left(t_{i}, t_{i}\right)=\mathbb{1}$.
(iii) Show that solving this equation iteratively, one obtains the "Dyson series":

$$
\begin{equation*}
\hat{U}_{I}\left(t, t_{i}\right)=\mathbb{1}-\frac{i}{\hbar} \int_{t_{i}}^{t} \hat{V}_{I}\left(t^{\prime}\right) d t^{\prime}+\left(-\frac{i}{\hbar}\right)^{2} \int_{t_{i}}^{t} \hat{V}_{I}\left(t_{1}\right) d t_{1} \int_{t_{i}}^{t_{1}} \hat{V}_{I}\left(t_{2}\right) d t_{2}+\ldots \tag{2}
\end{equation*}
$$

(iv) Consider now the following situation. Suppose that for $t<t_{i}$ and $t>t_{f}$, the system is described by the free Hamiltonian which satisfies $\hat{H}_{0}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle$, and, for $t_{i}<t<t_{f}$ the system is described by the Hamiltonian $\hat{H}=\hat{H}_{0}+\hat{V}(t)$. What is the probability that if the system was initially in the state $\left|\psi_{n}\right\rangle$, it will be found in the state $\left|\psi_{m}\right\rangle$ with $m \neq n$, after a time interval $T=t_{f}-t_{i}$? Hint:

$$
\begin{equation*}
\left.P(n \rightarrow m)=\left|\left\langle\psi_{m}\right| \hat{U}_{I}\left(t_{f}, t_{i}\right)\right| \psi_{n}\right\rangle\left.\right|^{2} \tag{3}
\end{equation*}
$$

(v) Let now H_{0} be the Hamiltonian for a harmonic oscillator, and $\hat{V}(q, t)=V_{0} \hat{q}^{3} e^{-t / \tau}$ where V_{0} is constant. Calculate the probability for a transition from the ground state at $t_{i}=0$ to n'th excited state for $t_{f} \rightarrow \infty$. Hint: You may use the following integral

$$
\begin{equation*}
\left|\int_{0}^{\infty} e^{-\left(\frac{1}{\tau}-i n w\right) t} d t\right|^{2}=\frac{1}{n^{2} w^{2}+\frac{1}{\tau^{2}}} \tag{4}
\end{equation*}
$$

Exercise 54 (central tutorial)

Let $\left|\phi_{n}\right\rangle$ be the eigenstates of the unperturbed Hamiltonian \hat{H}_{0} which has no degenerate eigenvalues. The complete system shall be described by $\hat{H}=\hat{H}_{0}+\hat{V}$. The correction to a state can generally be written as

$$
\begin{equation*}
\left|\bar{\phi}_{n}\right\rangle=\left|\phi_{n}\right\rangle+\sum_{l} c_{n}^{l}\left|\phi_{l}\right\rangle \tag{5}
\end{equation*}
$$

Calculate c_{n}^{l}, at first order in \hat{V}.

Exercise 55

The transition amplitude for the two level system is defined as in the lecture by

$$
\begin{equation*}
P_{T}(a \rightarrow b)=\left|\lambda_{b a}^{(1)}\right|^{2}=\frac{1}{\hbar^{2}}\left|\int_{0}^{T} d t_{I} V_{b a}\left(t_{I}\right) e^{i \omega_{b a} t_{I}}\right|^{2} \tag{6}
\end{equation*}
$$

where

$$
\begin{equation*}
V_{b a}\left(t_{I}\right)=\int d q_{I} \psi_{b}^{*}\left(q_{I}\right) V\left(q_{I}, t_{I}\right) \psi_{a}\left(q_{I}\right) \quad \text { and } \quad \omega_{b a}=\frac{E_{b}-E_{a}}{\hbar} \tag{7}
\end{equation*}
$$

is the matrix between the eigenstates of the energy levels. Show that

$$
\begin{equation*}
P_{T}(a \rightarrow b)=P_{T}(b \rightarrow a) \tag{8}
\end{equation*}
$$

Exercise 56

Prove that

$$
\begin{equation*}
\lim _{T \rightarrow \infty} \frac{\sin ^{2}(\alpha T)}{\pi \alpha^{2} T}=\delta(\alpha) \tag{9}
\end{equation*}
$$

Hint: you may find useful the following result, $\int_{\mathbb{R}} d x \frac{\sin ^{2}(x)}{x^{2}}=\pi$.

Exercise 57

Show for an isotropic stochastic electromagnetic field, that

$$
\begin{equation*}
\left.\left.\langle | \vec{E}\right|^{2}\right\rangle=3\left\langle E_{z}^{2}\right\rangle \tag{10}
\end{equation*}
$$

