Exercises on Quantum Mechanics II (TM1/TV)

Problem set 4, discussed November 11 - November 15, 2019

Exercise 25 (central tutorial)

(i) Consider a system Σ described by a state $\left|\psi_{\Sigma}\right\rangle$ and its corresponding density matrix $\hat{\rho}_{\Sigma}$, composed of subsystems I and $I I$; prove that the two definitions of density matrix for the subsystem $I, \hat{\rho}_{I}$, are equivalent:
a) For every operator that acts only on the subsystem $I, \hat{A}=\hat{A}_{I} \otimes \mathbb{1}$, the density matrix $\hat{\rho}_{I}$ is defined such that

$$
\begin{equation*}
\bar{A}=\operatorname{tr}\left(\hat{\rho}_{I} \hat{A}_{I}\right)=\bar{A}_{I} \tag{1}
\end{equation*}
$$

b)

$$
\begin{equation*}
\left.\hat{\rho}_{I}=\operatorname{tr}_{I I}\left(\hat{\rho}_{\Sigma}\right)=\left.\sum_{n}\left\langle{ }^{I I} \delta^{n}\right| \hat{\rho}_{\Sigma}\right|^{I I} \delta_{n}\right\rangle \tag{2}
\end{equation*}
$$

where $\left\{\left|{ }^{I I} \delta_{n}\right\rangle\right\}_{n \in \mathbb{N}}$ is an orthonormal basis for $I I$.
(ii) Prove that in general (i.e. also for mixed states) for density matrices the following relations hold:
a) $\operatorname{tr} \hat{\rho}=1$;
b) $\hat{\rho}$ is an hermitian operator;
c) $\hat{\rho}$ is a positive operator, i.e. $\langle\psi| \hat{\rho}|\psi\rangle \geq 0 \quad \forall|\psi\rangle$;
d) All the eigenvalues of $\hat{\rho}$ are between 0 and 1 ;
e) $\langle\psi| \hat{\rho}-\hat{\rho}^{2}|\psi\rangle \geq 0 \quad \forall|\psi\rangle$;
f) If $\hat{\rho}^{2}=\hat{\rho}$ then there exists a vector $|\phi\rangle$ for which $\hat{\rho}=|\phi\rangle\langle\phi|$ (pure state).

Exercise 26 (central tutorial)

(i) A harmonic oscillator has an equal classical probability $1 / 3$ to be found in each of the states $|0\rangle,|1\rangle$ and $4|0\rangle+3|1\rangle$. Write down the corresponding density matrix $\hat{\rho}$ explicitly.
(ii) Consider a system Σ consisting of two subsystems I and II. Σ is in a pure state $\left|\psi_{\Sigma}\right\rangle$, where $\left|\psi_{\Sigma}\right\rangle$ is a vector in the product space. The density matrices $\hat{\rho}_{I, I I}$ and $\hat{\rho}_{\Sigma}$ are defined as in the lecture. Remembering that

$$
\begin{equation*}
\left.\left.\hat{\rho}_{I}=\left.\operatorname{tr}_{I I} \hat{\rho}_{\Sigma} \equiv\left\langle{ }^{I I} \delta^{i}\right| \hat{\rho}_{\Sigma}\right|^{I I} \delta_{i}\right\rangle \quad \text { and } \quad \hat{\rho}_{I I}=\left.\operatorname{tr}_{I} \hat{\rho}_{\Sigma} \equiv\left\langle{ }^{I} \delta^{i}\right| \hat{\rho}_{\Sigma}\right|^{I} \delta_{i}\right\rangle \tag{3}
\end{equation*}
$$

and given $\{|n\rangle\}_{n \in \mathbb{N}}$ is a set of orthonormal vectors, calculate the density matrix for subsystems I and II, for

$$
\begin{equation*}
\left|\psi_{\Sigma}\right\rangle=\frac{1}{\sqrt{2}}(|0\rangle \otimes|1\rangle+|1\rangle \otimes|2\rangle) \tag{4}
\end{equation*}
$$

(iii) Consider $\hat{\rho}_{I}$ of the previous point. Does it correspond to a pure or to a mixed state?
(iv) Given a density matrix, the entropy of the described state is given by $S=-\operatorname{tr}(\hat{\rho} \log (\hat{\rho}))$. Express the entropy as a function of the eigenvalues of $\hat{\rho}$.
It can be shown that the maximum entropy is reached when all eigenvalues are equal, i.e. when every state is possible with the same probability; what is the maximum entropy for a Hilbert space of dimension d ? What is the entropy of a pure state? Calculate the entropy of $\hat{\rho}_{I}$ and $\hat{\rho}_{I I}$ of the previous part.

Exercise 27

Let us now consider a continuous system of two particles Σ, which consists of two subsystems I and $I I$. As before, Σ is in a pure state, which in this case can be expanded as

$$
\begin{equation*}
\left|\psi_{\Sigma}\right\rangle=\int \psi(x, y)|x\rangle|y\rangle d x d y \tag{5}
\end{equation*}
$$

Show that:

$$
\begin{gather*}
\bar{x}=\operatorname{tr} \hat{\rho}_{I} \hat{x}_{I}=\int x \rho_{I}(x, x) d x \tag{6}\\
\bar{p}=\operatorname{tr} \hat{\rho}_{I} \hat{p}_{I}=-i \hbar \int d x^{\prime}\left[\frac{\partial \rho_{I}\left(x^{\prime}, x\right)}{\partial x^{\prime}}\right]_{x=x^{\prime}} \tag{7}
\end{gather*}
$$

Exercise 28

Calculate the energy, pressure and entropy of a thermal radiation of temperature T in a volume V .
Hint: You may use the relation for the free energy $F(T, V)$ which is known from the lecture:

$$
\begin{equation*}
F(T, V)=2 k_{B} T V \int \frac{d^{3} k}{(2 \pi)^{3}} \ln \left[1-e^{-\beta \hbar \omega}\right] \tag{8}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta=\frac{1}{k_{B} T} \tag{9}
\end{equation*}
$$

You may also need the following result:

$$
\begin{equation*}
\int_{0}^{\infty} d x x^{2} \ln \left[1-e^{-x}\right]=-\frac{\pi^{4}}{45} \tag{10}
\end{equation*}
$$

Exercise 29

The matrix elements (in coordinate representation) of the density matrix $\hat{\rho}_{u}=e^{-\beta \hat{H}}$ for a free particle in a three dimensional volume V , satisfy the diffusion equation

$$
\begin{equation*}
\frac{\partial \rho_{u}\left(\vec{x}, \vec{x}^{\prime} ; \beta\right)}{\partial \beta}=\frac{\hbar^{2}}{2 m} \Delta_{\vec{x}} \rho_{u}\left(\vec{x}, \vec{x}^{\prime} ; \beta\right) \tag{11}
\end{equation*}
$$

with the initial condition $\rho_{u}\left(\vec{x}, \vec{x}^{\prime} ; 0\right) \equiv \delta\left(\vec{x}-\vec{x}^{\prime}\right)$.
Show that this equation has the following solution:

$$
\begin{equation*}
\rho_{u}\left(\vec{x}, \vec{x}^{\prime} ; \beta\right)=\left(\frac{m}{2 \pi \hbar^{2} \beta}\right)^{\frac{3}{2}} \exp \left[-\frac{m}{2 \hbar^{2} \beta}\left(\vec{x}-\vec{x}^{\prime}\right)^{2}\right] \tag{12}
\end{equation*}
$$

Exercise 30

Consider the three dimensional Hilbert spaces $\mathcal{H}_{i}, i=1,2,3$. Take the tensor product $\mathcal{H}=\mathcal{H}_{1} \otimes \mathcal{H}_{2} \otimes \mathcal{H}_{3}$. Let $|0\rangle,|1\rangle,|2\rangle$ be an orthonormal basis in a single three dimensional Hilbert space. Then a basis of the tensor product is given by $|x y z\rangle$, where $x, y, z \in\{0,1,2\}$. Pick the following two states in \mathcal{H} :

$$
\begin{equation*}
|\psi\rangle=|000\rangle \quad|\phi\rangle=\frac{1}{\sqrt{3}}(|000\rangle+|111\rangle+|222\rangle) \tag{13}
\end{equation*}
$$

(i) Compute the reduced density matrix for the system with Hilbert space $\mathcal{H}_{1} \otimes \mathcal{H}_{2}$ for each case.
(ii) Compute the entanglement entropy in each case using your result.

General information

The lecture takes place on:
Monday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
The central tutorial takes place on Monday at 12:00-14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at
https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II

