Prof. Dr. Viatcheslav Mukhanov

Winter term 2019/2020

Exercises on Quantum Mechanics II (TM1/TV) Problem set 14, discussed February 3 - February 7, 2020

Exercise 76 - Central tutorial

Consider a Stern-Gerlach Experiment oriented in the z-direction connected to a detector. Before the measurement the detector is in the state $|\psi^A[0]\rangle$. If a silver atom with spin up $|\uparrow\rangle$ is measured the detector is in the state $|\psi^A[\uparrow]\rangle$ and and for spin down $|\downarrow\rangle$ the state of the device is $|\psi^A[\downarrow]\rangle$. Let the silver atom be in a general spin state $|\psi^S\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$, with $\alpha, \beta \in \mathbb{C}$ and $|\alpha|^2 + |\beta|^2 = 1$.

- (i) Write down the general state $|\Psi^1\rangle$ of the whole system before and after the measurement.
- (ii) Write the states as $|\uparrow\rangle = (1,0)^T$, $|\downarrow\rangle = (0,1)^T$, $|\psi^A[\uparrow]\rangle = (1,0,0)^T$, $|\psi^A[0]\rangle = (0,1,0)^T$, $|\psi^A[\downarrow]\rangle = (0,0,1)^T$ and express $|\Psi^1\rangle$ in that basis.

Now we want to repeat this experiment N times with silver atoms being in the same state $|\psi^{S}\rangle$. Define new states of the detector as $|\psi^{A}_{+}[n]\rangle$ and $|\psi^{A}_{-}[m]\rangle$ where n and m are the numbers of silver atoms measured with spin up and down respectively.

- (iii) What is the corresponding spin state for $|\psi_{+}^{A}[1]\rangle \otimes |\psi_{-}^{A}[2]\rangle$ if N = 3?
- (iv) Write the state of the whole system before and after the measurement and bring it in the normalized form

$$\left|\Psi^{N}\right\rangle = \sum_{n=0}^{N} c_{n} \left|\uparrow_{1}\right\rangle \otimes \ldots \otimes \left|\uparrow_{n}\right\rangle \otimes \left|\downarrow_{n+1}\right\rangle \otimes \ldots \otimes \left|\downarrow_{N}\right\rangle \otimes \left|\psi_{+}^{A}[n]\right\rangle \otimes \left|\psi_{-}^{A}[N-n]\right\rangle$$
(1)

(v) Find the expectation values of n and m in the limit $N \to \infty$. Interpret your result. (*Hint:* Use the fact that the binomial distribution becomes the normal distribution in the large N limit.)

Exercise 77 - Central tutorial

Consider a gaussian wave packet as in exercise 67:

$$\psi(q,t) = N \exp\left[\alpha(t) + \frac{i}{\hbar} p_{cl}(t)(q - q_{cl}(t)) - \frac{1}{2\sigma(t)}(q - q_{cl}(t))^2\right].$$
(2)

where $p_{cl}(t) = m \frac{d}{dt} q_{cl}(t)$.

- (i) Determine the normalization coefficient N (assuming that $q_{cl}(t)$ is real).
- (ii) Determine the expectation value of \hat{q} in the sate $\psi(q, t)$ and show that in the same state

$$\Delta q^2 \equiv \langle (\hat{q} - \langle \hat{q} \rangle)^2 \rangle = \frac{|\sigma(t)|^2}{2\Re\sigma(t)}.$$
(3)

- (iii) Find the expression for the wave function in the momentum space.
- (iv) Using the previous result, evaluate the expectation value of \hat{p} and Δp^2 .

- (v) Verify that the Heisenberg uncertainty relations are satisfied. For which values of $\sigma(t)$ do we get an equality?
- (vi) Until now we considered the Gaussian packet purely kinematically, without any dynamics. Consider now the Hamiltonian of the form

$$\hat{H} = \frac{\hat{p}^2}{2m} + V(\hat{q})$$
 (4)

Remember that in Exercise 61 it was shown that $q_{cl}(t)$ satisfies the classical Newton's equations

$$\dot{p}_{cl}(t) = -V'(q_{cl}(t))$$
(5)

while the function $\sigma^2(t)$ satisfied equation

$$\frac{d}{dt}\sigma^2(t) = \frac{i\hbar}{m} + \frac{i}{\hbar}V''(q_{cl}(t))\sigma^4(t).$$
(6)

Solve this equation for the free particle and the particle in a homogeneous (constant) force field.

- (vii) Analyse the spreading behaviour of the wave packet in the momentum space.
- (viii) Analyse the spreading behaviour of the wave packet in the position space.

Exercise 78

A Stern-Gerlach experiment oriented in the z-direction is fed with silver atoms. The result is that half of the atoms is measured with spin up and the other half with spin down.

- (i) Write down the spin state of one silver atom.
- (ii) The Stern-Gerlach experiment can be interpreted as a spin operator \hat{S}_z with eigenstates $|\uparrow_z\rangle$ and $|\downarrow_z\rangle$ and corresponding eigenvalues $\pm \frac{\hbar}{2}$. Write \hat{S}_z, \hat{S}_x and \hat{S}_y in terms of their eigenstates.
- (iii) Use the fact that $|\uparrow_x\rangle$ measured in z-direction gives eigenvalues $\pm \frac{\hbar}{2}$ with $\frac{1}{2}$ probability but never $-\frac{\hbar}{2}$ if measured in x-direction to write \hat{S}_x in terms of $|\uparrow_z\rangle$ and $|\downarrow_z\rangle$. There should be one free parameter left.
- (iv) Repeat the same for the y-direction.
- (v) Use the fact that $|\uparrow_x\rangle$ measured in *y*-direction gives eigenvalues $\pm \frac{\hbar}{2}$ with $\frac{1}{2}$ probability to fix the remaining free parameter.
- (vi) You now have \hat{S}_x , \hat{S}_y and \hat{S}_z in the eigenbasis of \hat{S}_z . What do they remind you of?

Exercise 79

Assume that a system S is coupled to a measuring device M. The state before the measurement is

$$|\Psi_0\rangle = |s\rangle \otimes |M_0\rangle, \qquad |s\rangle = \sum_n a_n |s_n\rangle \tag{7}$$

and the state after the measurement is

$$|\Psi\rangle = \sum_{n} a_n |s_n\rangle \otimes |M_n\rangle \tag{8}$$

where the device states $|M_n\rangle$ are orthogonal. Find the density operator $\hat{\rho}$ for the subsystem S after the measurement.

Exercise 80

Consider the same physical system as in exercise 73.

(i) Show that the classical equation of motion for $\varphi(t)$ is

$$T\ddot{\varphi} = \dot{p_{\varphi}} = -g(t)p_q - Ig(t)^2\varphi.$$
(9)

- (ii) Quantize the Hamiltonian found the last week (exercise 73). How does the equation of motion change after the quantization?
- Assume that the driving current is constant, i.e. $g(t) = g_0$. Find the general (operator) solution of the (iii) equations of motion with the initial conditions $\hat{\varphi}(t=0) = \hat{\varphi}_0$ and $\dot{\varphi}(t=0) = T^{-1}\hat{p}_{\varphi}^{(0)}$. It is useful to introduce the frequency $Ig_0^2 = T\omega^2$. The result you should get is

$$\hat{\varphi}(t) = -\frac{\hat{p}_q}{Ig_0} + \left(\hat{\varphi}_0 + \frac{\hat{p}_q}{Ig_0}\right)\cos(\omega t) + \frac{\hat{p}_{\varphi}^{(0)}}{T\omega}\sin(\omega t).$$
(10)

(iv) Verify the commutation relation

$$[\hat{\varphi}(t), \hat{\varphi}(t+\tau)] = \frac{i\hbar}{T\omega}\sin(\omega\tau).$$
(11)

Exercise 81

Consider a system of two spin $\frac{1}{2}$ particles. Let us denote $|\uparrow\rangle$ the normalized eigenvector of σ_3 with eigenvalue +1 and $|\downarrow\rangle$ the eigenvector with eigenvalue -1.

- (i) Express the normalized eigenvectors of $\sigma_1 \mid \rightarrow \rangle$ (eigenvalue +1) and $\mid \leftarrow \rangle$ (eigenvalue -1) in terms of $|\uparrow\rangle$ and $|\downarrow\rangle$.
- (ii) Find a vector in two particle Hilbert space

$$|\psi\rangle = \alpha_1 |\uparrow\uparrow\rangle + \ldots + \alpha_4 |\downarrow\downarrow\rangle \tag{12}$$

such that it has total spin zero, i.e. that all components of \hat{J} annihilate this vector. The total spin operator is

$$\hat{\boldsymbol{J}} = \frac{1}{2}\boldsymbol{\sigma} \otimes \mathbb{1} + \frac{1}{2}\mathbb{1} \otimes \boldsymbol{\sigma}.$$
(13)

- (iii) Express $|\psi\rangle$ in terms of $|\rightarrow\rangle$ and $|\leftarrow\rangle$ basis. How can you interpret the result?
- (iv) Show by a direct calculation that $|\psi\rangle$ cannot be expressed as a product state $|\alpha\rangle \otimes |\beta\rangle$
- (v) Calculate the reduced density matrix associated to $|\psi\rangle$ if we can no longer perform any measurements on the second particle (i.e. trace over Hilbert space of the second particle).
- (vi) Find the entanglement entropy associated to this reduced density matrix and explain how the result proves that $|\psi\rangle$ was not a product state.

General information

The *lecture* takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

The central tutorial takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstraße 37) The webpage for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II