Prof. Dr. Viatcheslav Mukhanov

Winter term 2019/2020

Exercises on Quantum Mechanics II (TM1/TV) Problem set 11, discussed January 13 - January 17, 2019

Exercise 64 (Central Tutorial)

Let's consider the hydrogen atom ignoring the spins of the electron and of the proton. In order to have non-zero transition probability from an energy state $|\psi_a\rangle$ to another one $|\psi_b\rangle$, the matrix element of the dipole moment operator $\mathbf{D}_{ba} \equiv e \langle \psi_b | \hat{\mathbf{r}} | \psi_a \rangle$ must be non-zero too ($\hat{\mathbf{r}} = (\hat{x}, \hat{y}, \hat{z})$). The conditions to have non-zero transition probabilities are called *selection rules*.

- (i) Which are good quantum numbers that characterize the state $|\psi\rangle$ of the hydrogen atom? To what do they physically correspond?
- (ii) Which values can those quantum numbers have? What is the degeneracy of the state for a given energy level?
- (iii) Recalling the definition of the angular momentum operator $\hat{L} = (\hat{L}_x, \hat{L}_y, \hat{L}_z)$, calculate

$$\begin{bmatrix} \hat{L}_z, \hat{x} \end{bmatrix}$$
 , $\begin{bmatrix} \hat{L}_z, \hat{y} \end{bmatrix}$, $\begin{bmatrix} \hat{L}_z, \hat{z} \end{bmatrix}$ (1)

- (iv) Using the results of the previous point and taking the expectation values of those between two different states $|\psi_a\rangle$ and $|\psi_b\rangle$, derive the selection rules to have $D_{ab} \neq 0$.
- (v) These are not the only selection rules. Recall the definition of the Casimir operator \hat{L}^2 ; what is the action of this operator on an eigenstate $|\psi\rangle$? Prove that

$$\left[\hat{L}^2, \left[\hat{L}^2, \hat{\boldsymbol{r}}\right]\right] = 2\hbar^2 (\hat{\boldsymbol{r}}\hat{L}^2 + \hat{L}^2\hat{\boldsymbol{r}})$$
⁽²⁾

- (vi) Use the previous results to find other selection rules for the transition between $|\psi_a\rangle$ and $|\psi_b\rangle$.
- (vii) What do these selection rules correspond physically to?

Exercise 65

Show that the life time τ of an atom in an excited state is inversely proportional to the Einstein-coefficient A of spontaneous emission.

Exercise 66

Consider a two-level system as in the lecture. Write the equations for the occupation number of the lower level, $\frac{dN_a}{dt}$, and upper level, $\frac{dN_b}{dt}$. Using these, show that $N_a + N_b = const$.

Exercise 67

Consider the general Schrödinger equation

$$i\hbar\frac{\partial\psi(q,t)}{\partial t} = -\frac{\hbar}{2m}\frac{\partial^2\psi(q,t)}{\partial q^2} + V(q)\psi(q,t)$$
(3)

where V is at most quadratic in q. Validate that the Ansatz

$$\psi(q,t) = \frac{1}{N} \exp\left[\alpha(t) + \frac{i}{\hbar} p_{cl}(t)(q - q_{cl}(t)) - \frac{(q - q_{cl}(t))^2}{2\sigma^2(t)}\right]$$
(4)

where $p_{cl} = m \frac{dq_{cl}}{dt}$ leads to an equation of the form

$$F_1(t) + F_2(t)(q - q_{cl}(t)) + F_3(t)(q - q_{cl}(t))^2 = 0$$
(5)

Show that

$$F_{1} = 0 \equiv \frac{d\alpha}{dt} = \frac{i}{\hbar} \left(\frac{p_{cl}^{2}}{2m} - V(q_{cl}) \right) - \frac{i\hbar}{2m\sigma^{2}(t)}$$

$$F_{2} = 0 \equiv \frac{dp_{cl}}{dt} = -\frac{\partial V}{\partial q}(q_{cl})$$

$$F_{3} = 0 \equiv \frac{d\sigma^{2}}{dt} = \frac{i\hbar}{m} - \frac{i}{\hbar} \frac{\partial^{2} V}{\partial q^{2}} \sigma^{4}$$
(6)

General information

The *lecture* takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

The *central tutorial* takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstraße 37) The *webpage* for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II