Exercises on Quantum Mechanics II (TM1/TV)

Problem set 11, discussed January 13 - January 17, 2019

Exercise 64 (Central Tutorial)

Let's consider the hydrogen atom ignoring the spins of the electron and of the proton. In order to have non-zero transition probability from an energy state $\left|\psi_{a}\right\rangle$ to another one $\left|\psi_{b}\right\rangle$, the matrix element of the dipole moment operator $\boldsymbol{D}_{b a} \equiv e\left\langle\psi_{b}\right| \hat{\boldsymbol{r}}\left|\psi_{a}\right\rangle$ must be non-zero too $(\hat{\boldsymbol{r}}=(\hat{x}, \hat{y}, \hat{z})$). The conditions to have non-zero transition probabilities are called selection rules.
(i) Which are good quantum numbers that characterize the state $|\psi\rangle$ of the hydrogen atom? To what do they physically correspond?
(ii) Which values can those quantum numbers have? What is the degeneracy of the state for a given energy level?
(iii) Recalling the definition of the angular momentum operator $\hat{\boldsymbol{L}}=\left(\hat{L}_{x}, \hat{L}_{y}, \hat{L}_{z}\right)$, calculate

$$
\begin{equation*}
\left[\hat{L}_{z}, \hat{x}\right] \quad, \quad\left[\hat{L}_{z}, \hat{y}\right] \quad, \quad\left[\hat{L}_{z}, \hat{z}\right] \tag{1}
\end{equation*}
$$

(iv) Using the results of the previous point and taking the expectation values of those between two different states $\left|\psi_{a}\right\rangle$ and $\left|\psi_{b}\right\rangle$, derive the selection rules to have $\boldsymbol{D}_{a b} \neq 0$.
(v) These are not the only selection rules. Recall the definition of the Casimir operator \hat{L}^{2}; what is the action of this operator on an eigenstate $|\psi\rangle$? Prove that

$$
\begin{equation*}
\left[\hat{L}^{2},\left[\hat{L}^{2}, \hat{\boldsymbol{r}}\right]\right]=2 \hbar^{2}\left(\hat{\boldsymbol{r}} \hat{L}^{2}+\hat{L}^{2} \hat{\boldsymbol{r}}\right) \tag{2}
\end{equation*}
$$

(vi) Use the previous results to find other selection rules for the transition between $\left|\psi_{a}\right\rangle$ and $\left|\psi_{b}\right\rangle$.
(vii) What do these selection rules correspond physically to?

Exercise 65

Show that the life time τ of an atom in an excited state is inversely proportional to the Einstein-coefficient A of spontaneous emission.

Exercise 66

Consider a two-level system as in the lecture. Write the equations for the occupation number of the lower level, $\frac{d N_{a}}{d t}$, and upper level, $\frac{d N_{b}}{d t}$. Using these, show that $N_{a}+N_{b}=$ const.

Exercise 67

Consider the general Schrödinger equation

$$
\begin{equation*}
i \hbar \frac{\partial \psi(q, t)}{\partial t}=-\frac{\hbar}{2 m} \frac{\partial^{2} \psi(q, t)}{\partial q^{2}}+V(q) \psi(q, t) \tag{3}
\end{equation*}
$$

where V is at most quadratic in q. Validate that the Ansatz

$$
\begin{equation*}
\psi(q, t)=\frac{1}{N} \exp \left[\alpha(t)+\frac{i}{\hbar} p_{c l}(t)\left(q-q_{c l}(t)\right)-\frac{\left(q-q_{c l}(t)\right)^{2}}{2 \sigma^{2}(t)}\right] \tag{4}
\end{equation*}
$$

where $p_{c l}=m \frac{d q_{c l}}{d t}$ leads to an equation of the form

$$
\begin{equation*}
F_{1}(t)+F_{2}(t)\left(q-q_{c l}(t)\right)+F_{3}(t)\left(q-q_{c l}(t)\right)^{2}=0 \tag{5}
\end{equation*}
$$

Show that

$$
\begin{align*}
& F_{1}=0 \equiv \frac{d \alpha}{d t}=\frac{i}{\hbar}\left(\frac{p_{c l}^{2}}{2 m}-V\left(q_{c l}\right)\right)-\frac{i \hbar}{2 m \sigma^{2}(t)} \\
& F_{2}=0 \equiv \frac{d p_{c l}}{d t}=-\frac{\partial V}{\partial q}\left(q_{c l}\right) \tag{6}\\
& F_{3}=0 \equiv \frac{d \sigma^{2}}{d t}=\frac{i \hbar}{m}-\frac{i}{\hbar} \frac{\partial^{2} V}{\partial q^{2}} \sigma^{4}
\end{align*}
$$

General information

The lecture takes place on:
Monday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
The central tutorial takes place on Monday at 12:00-14:00 c.t. in B 139 (Theresienstraße 37) The webpage for the lecture and exercises can be found at

