Exercises on Quantum Mechanics II (TM1/TV)

Problem set 3, discussed November 4 - November 8, 2019

Exercise 19

(i) Show that the momentum eigenstates $|p\rangle$ are "normalized to the δ-function" if

$$
\langle p \mid x\rangle=\frac{1}{\sqrt{2 \pi \hbar}} e^{-\frac{i}{\hbar} p x}
$$

(ii) Show

$$
\hat{x}|\psi\rangle=\int d x x \psi(x)|x\rangle=i \hbar \int d p \frac{\partial \psi(p)}{\partial p}|p\rangle
$$

and

$$
\hat{p}|\psi\rangle=\int d p p \psi(p)|p\rangle=-i \hbar \int d x \frac{\partial \psi(x)}{\partial x}|x\rangle
$$

where $\psi(x)=\langle x \mid \psi\rangle$ and $\psi(p)=\langle p \mid \psi\rangle$.

Exercise 20 (central tutorial)

(i) Knowing that $\hat{p}|p\rangle=p|p\rangle$ and that $[\hat{q}, \hat{p}]=i \hbar$, calculate the matrix element $\left\langle p_{1}\right| \hat{q}\left|p_{2}\right\rangle$. You should start by considering the matrix element $\left\langle p_{1}\right|[\hat{q}, \hat{p}]\left|p_{2}\right\rangle$ and its implications.

Hint: Recall what it has been done in the lecture with $\left\langle q_{1}\right| \hat{p}\left|q_{2}\right\rangle$, but this time don't set to zero the constant of integration and keep it.
(ii) How does the previous result change if you replace \hat{q} by $\hat{q}+c(\hat{p})$, where $c(\hat{p})$ is an arbitrary function? What does this mean?
(iii) Consider now a general transformation for the redefinition of position and momentum operator:

$$
\hat{Q}=\hat{U} \hat{q} \hat{U}^{\dagger} \quad, \quad \hat{P}=\hat{U} \hat{p} \hat{U}^{\dagger}
$$

Why is a transformation of the type $\hat{Q}=\hat{U} \hat{q} \hat{V}$ (same for \hat{P}) with $\hat{V} \neq \hat{U}^{\dagger}$ not allowed? What is the condition \hat{U} must satisfy in order to preserve the canonical commutation relation $[\hat{Q}, \hat{P}]=[\hat{q}, \hat{p}]=i \hbar$?
(iv) Consider $\hat{U}=e^{\frac{i}{\hbar} \alpha(\hat{p})}$. Working in momentum representation, i.e. $\hat{p} \rightarrow p$ and $\hat{q} \rightarrow i \hbar \frac{\partial}{\partial p}$ acting on some wave-function $\psi(p)$, find how \hat{q} and \hat{p} are transformed under \hat{U}.

Exercise 21

Consider the following Hamilton operator

$$
\begin{equation*}
\hat{H}=\frac{\hat{p}^{2}}{2}+\cosh \hat{x} \tag{1}
\end{equation*}
$$

Write the time independent Schrödinger equation

$$
\begin{equation*}
\hat{H}\left|\psi_{n}\right\rangle=E_{n}\left|\psi_{n}\right\rangle \tag{2}
\end{equation*}
$$

in components in position and momentum representation.

Exercise 22 (central tutorial)

Let us consider a harmonic oscillator of unit mass, described by the Lagrangian

$$
\begin{equation*}
L=\frac{\dot{q}^{2}}{2}-\frac{\omega^{2}}{2} q^{2} \tag{3}
\end{equation*}
$$

where ω is the constant frequency.
(i) What is the corresponding Hamiltonian? Now promote coordinate and momenta into operators. What is the commutation relation which they should satisfy? Set $\hbar=1$.
(ii) Let's define creation and annihilation operators respectively as

$$
\begin{equation*}
\hat{a}^{\dagger}=\sqrt{\frac{\omega}{2}}\left(\hat{q}-\frac{i}{\omega} \hat{p}\right) \quad \hat{a}=\sqrt{\frac{\omega}{2}}\left(\hat{q}+\frac{i}{\omega} \hat{p}\right) \tag{4}
\end{equation*}
$$

Derive the commutation relation which they should satisfy. Express the Hamiltonian in terms of the creation and annihilation operators.
(iii) What is the energy of the ground state? Calculate $\left\langle(\Delta \hat{q})^{2}\right\rangle_{0}\left\langle(\Delta \hat{p})^{2}\right\rangle_{0}$, where for an operator \hat{A} we have $\langle\hat{A}\rangle_{0}=\langle 0| \hat{A}|0\rangle, \hat{a}|0\rangle=0$ and $\Delta \hat{A}=\sqrt{\left\langle\hat{A}^{2}\right\rangle-\langle\hat{A}\rangle^{2}}$.
(iv) Now let λ, μ be complex constants. Show the following identities:

$$
\begin{gather*}
{\left[\hat{a}, e^{\lambda \hat{a}^{\dagger}}\right]=\lambda e^{\lambda \hat{a}^{\dagger}}} \tag{5}\\
e^{\lambda \hat{a}} e^{\mu \hat{a}^{\dagger}}=e^{\mu \lambda} e^{\mu \hat{a}^{\dagger}} e^{\lambda \hat{a}}
\end{gather*}
$$

Hint: Consider the function

$$
\begin{equation*}
f(\lambda, \mu)=e^{\lambda \hat{a}} e^{\mu \hat{a}^{\dagger}} e^{-\lambda \hat{a}} e^{-\mu \hat{a}^{\dagger}} \tag{6}
\end{equation*}
$$

and its derivatives $\frac{\partial f}{\partial \lambda}, \frac{\partial f}{\partial \mu}$.

Exercise 23 (central tutorial)

We define the coherent state as an eigenstate of the annihilation operator:

$$
\begin{equation*}
\hat{a}|a\rangle=a|a\rangle \tag{7}
\end{equation*}
$$

(i) Calculate using the results of the previous exercise $\left\langle(\Delta \hat{q})^{2}\right\rangle_{a}\left\langle(\Delta \hat{p})^{2}\right\rangle_{a}$. How can we interpret this result?
(ii) Prove the following relation

$$
\begin{equation*}
|a\rangle=e^{a \hat{a}^{\dagger}}|0\rangle \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{a}|0\rangle=0 \quad \text { and } \quad|a\rangle=\sum_{n} \frac{a^{n}}{\sqrt{n!}}|n\rangle \quad \text { with } \quad|n\rangle=\frac{\left(\hat{a}^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle . \tag{9}
\end{equation*}
$$

(iii) Show that the states $|n\rangle$ are orthonormal eigenvectors of the occupation number operator $\hat{N}=\hat{a}^{\dagger} \hat{a}$.
(iv) Find $\psi_{n}(a)=\langle a \mid n\rangle$ for eigenvectors of \hat{N}.

Exercise 24

Consider the Pauli matrices $\hat{\sigma}_{1}, \hat{\sigma}_{2}, \hat{\sigma}_{3}$.
(i) Show that $\hat{\sigma}_{1} \hat{\sigma}_{2}=i \hat{\sigma}_{3}$. What are $\hat{\sigma}_{1} \hat{\sigma}_{3}$ and $\hat{\sigma}_{2} \hat{\sigma}_{3}$?
(ii) Show that $\left[\hat{\sigma}_{1}, \hat{\sigma}_{2}\right]=2 i \hat{\sigma}_{3}$ and $\left\{\hat{\sigma}_{1}, \hat{\sigma}_{2}\right\}=0$.

The properties above can be generalized and encoded in the following relations:

$$
\hat{\sigma}_{i} \hat{\sigma}_{j}=\delta_{i j} \mathbb{1}+i \epsilon_{i j}^{k} \hat{\sigma}_{k} \quad, \quad\left\{\hat{\sigma}_{i}, \hat{\sigma}_{j}\right\}=2 \delta_{i j} \quad, \quad\left[\hat{\sigma}_{i}, \hat{\sigma}_{j}\right]=2 i \epsilon_{i j}^{k} \hat{\sigma}_{k}
$$

where $\epsilon_{i j}{ }^{k}$ indicates the Levi-Civita tensor (or totally anti-symmetric tensor).
(iii) Let v^{j} be three components of a (real) vector, define the spin operator as $\hat{\sigma}=\left(\hat{\sigma}_{1}, \hat{\sigma}_{2}, \hat{\sigma}_{3}\right)$ and let

$$
v \cdot \hat{\sigma} \equiv v^{j} \hat{\sigma}_{j}=v^{1} \hat{\sigma}_{1}+v^{2} \hat{\sigma}_{2}+v^{3} \hat{\sigma}_{3}
$$

Calculate $(v \cdot \hat{\sigma})^{2}$ and show that

$$
\exp (i v \cdot \hat{\sigma})=\cos |v|+i \frac{v \cdot \hat{\sigma}}{|v|} \sin |v|
$$

where $|v|=\sqrt{v^{j} v_{j}}$.

General information

The lecture takes place on:
Monday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
The central tutorial takes place on Monday at 12:00-14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

