Exercises on Quantum Mechanics II (TM1/TV)

Problem set 2, discussed October 28 - November 1, 2019

Exercise 9 (central tutorial)

(i) Show that if $\hat{A} \hat{B}=\hat{\mathbb{1}}=\hat{C} \hat{A}$ then we have

$$
\hat{B}=\hat{A}^{-1}=\hat{C}
$$

Remember that the inverse operator \hat{A}^{-1} satisfies $|\psi\rangle=\hat{A}|\chi\rangle$ if and only if $|\chi\rangle=\hat{A}^{-1}|\psi\rangle$.
(ii) Given an example of operators \hat{A} and \hat{B} in Hilbert space for which $\hat{A} \hat{B}=\hat{\mathbb{1}}$ holds but for which $\hat{B} \hat{A} \neq \hat{\mathbb{1}}$.
(iii) Let \hat{A} be an operator such that $\hat{A}^{2}=\lambda \hat{\mathbb{I}}$ where $\lambda \neq 1$ is a complex number. Write $(\hat{A}+\hat{\mathbb{1}})^{-1}$ explicitly in terms of \hat{A}.

Exercise 10

Consider the operator $\hat{A}=\frac{d}{d x}$.
(i) Use the Taylor expansion to find out how $e^{\alpha \hat{A}}$ acts on wavefunctions. Interpret the result physically.
(ii) How do operators $\hat{B} \equiv \sinh (\alpha \hat{A})$ and $\hat{C} \equiv \sin (\alpha \hat{A})$ act on wavefunctions?

Exercise 11

Find \hat{A}^{\dagger} for $\hat{A}=|\varphi\rangle\langle\psi|$. Remember that \hat{A}^{\dagger} is defined such that for any two vectors $|\psi\rangle$ and $|\chi\rangle$ we have $\langle\psi \mid \hat{A} \chi\rangle=\left\langle\hat{A}^{\dagger} \psi \mid \chi\right\rangle$.

Exercise 12

(i) Show that for an orthonormal basis $\left|\delta_{j}\right\rangle$ we have the completeness relation

$$
\sum_{k}\left|\delta_{k}\right\rangle\left\langle\delta^{k}\right|=\hat{\mathbb{1}} .
$$

(ii) Consider a product of two operators $\hat{C}=\hat{A} \hat{B}$. Remember that the matrix elements of the operator \hat{A} in the orthonormal basis $\left|\delta_{j}\right\rangle$ were defined as $A^{j}{ }_{k} \equiv\left\langle\delta^{j}\right| \hat{A}\left|\delta_{k}\right\rangle$. Show that the components of \hat{C} are given by the usual product of matrices.
(iii) Show that the operator \hat{A} can be reconstructed from its components via

$$
\hat{A}=\sum_{j k} A^{j}{ }_{k}\left|\delta_{j}\right\rangle\left\langle\delta^{k}\right|
$$

Exercise 13

It was shown in the lecture that the matrix elements of the conjugate operator are

$$
\left\langle\delta^{j}\right| \hat{C}^{\dagger}\left|\delta_{l}\right\rangle=\left[\left\langle\delta^{l}\right| \hat{C}\left|\delta_{j}\right\rangle\right]^{*},
$$

i.e. the matrix of components is complex conjugate transpose. Use this to show that $(\hat{A} \hat{B})^{\dagger}=\hat{B}^{\dagger} \hat{A}^{\dagger}$.

Exercise 14 (central tutorial)

Consider a change of orthonormal basis $|\delta\rangle \rightarrow|\tilde{\delta}\rangle$ in the Hilbert space described by $U^{j}{ }_{k} \equiv\left\langle\tilde{\delta}^{j} \mid \delta_{k}\right\rangle$.
(i) Show that $U^{j}{ }_{k}$ are components of unitary matrix, i.e. $\left(U^{\dagger}\right)^{j}{ }_{k}=\left(U^{k}{ }_{j}\right)^{*}=\left(U^{-1}\right)^{j}{ }_{k}$.
(ii) Show that the components of bra vectors in the old and in the new basis are related by

$$
\tilde{\psi}_{k}=\sum_{j} \psi_{j}\left(U^{\dagger}\right)^{j}{ }_{k}
$$

(iii) Show that the matrix elements of operators transform as

$$
\tilde{A}_{m}^{j}=\sum_{k l} U^{j}{ }_{k} A^{k}{ }_{l}\left(U^{\dagger}\right)^{l}{ }_{m}
$$

Exercise 15

Consider a Hermitian operator \hat{A} and a unitary operator \hat{U}.
(i) Show that the trace of the operator \hat{A} is independent of the choice of the basis. What property of the trace follows from the hermiticity of \hat{A} ?
(ii) How are spectra of \hat{A} and of $\hat{U} \hat{A} \hat{U}^{\dagger}$ related?

Exercise 16

Consider a linear operator acting on a Hilbert space such that it maps one orthonormal basis into another one, $\hat{U}\left|\delta_{j}\right\rangle=\left|\delta_{j}^{\prime}\right\rangle$. How can you write this operator in terms of basis vectors? Find its hermitian conjugate.

Exercise 17 (central tutorial)

The position operator \hat{x} is hermitian. The momenum operator satisfies the commutation relation

$$
[\hat{x}, \hat{p}]=i \hbar \hat{\mathbb{1}} .
$$

Does this imply that \hat{p} is a hermitian operator? Can there exist finite dimensional matrices \hat{x} and \hat{p} which satisfy these commutation relations?

Exercise 18 (central tutorial)

Check by direct calculation that

$$
\int d q^{\prime \prime}\left[X_{q^{\prime \prime}}^{q} P_{q^{\prime}}^{q^{\prime \prime}}-P_{q^{\prime \prime}}^{q} X_{q^{\prime}}^{q^{\prime \prime}}\right]=i \hbar \delta_{q^{\prime}}^{q}=i \hbar \delta\left(q-q^{\prime}\right)
$$

where the matrix elements of \hat{X} are $X^{q}{ }_{q^{\prime}} \equiv\langle q| \hat{X}\left|q^{\prime}\right\rangle$ and similarly for \hat{P}.

