Prof. Dr. Viatcheslav Mukhanov

Winter term 2019/2020

Exercises on Quantum Mechanics II (TM1/TV)Problem set 2, discussed October 28 - November 1, 2019

Exercise 9 (central tutorial)

(i) Show that if $\hat{A}\hat{B} = \hat{1} = \hat{C}\hat{A}$ then we have

$$\hat{B} = \hat{A}^{-1} = \hat{C}.$$

Remember that the inverse operator \hat{A}^{-1} satisfies $|\psi\rangle = \hat{A} |\chi\rangle$ if and only if $|\chi\rangle = \hat{A}^{-1} |\psi\rangle$.

- (ii) Given an example of operators \hat{A} and \hat{B} in Hilbert space for which $\hat{A}\hat{B} = \hat{1}$ holds but for which $\hat{B}\hat{A} \neq \hat{1}$.
- (iii) Let \hat{A} be an operator such that $\hat{A}^2 = \lambda \hat{1}$ where $\lambda \neq 1$ is a complex number. Write $(\hat{A} + \hat{1})^{-1}$ explicitly in terms of \hat{A} .

Exercise 10

Consider the operator $\hat{A} = \frac{d}{dx}$.

- (i) Use the Taylor expansion to find out how $e^{\alpha \hat{A}}$ acts on wavefunctions. Interpret the result physically.
- (ii) How do operators $\hat{B} \equiv \sinh(\alpha \hat{A})$ and $\hat{C} \equiv \sin(\alpha \hat{A})$ act on wavefunctions?

Exercise 11

Find \hat{A}^{\dagger} for $\hat{A} = |\varphi\rangle \langle \psi|$. Remember that \hat{A}^{\dagger} is defined such that for any two vectors $|\psi\rangle$ and $|\chi\rangle$ we have $\langle \psi|\hat{A}\chi\rangle = \langle \hat{A}^{\dagger}\psi|\chi\rangle$.

Exercise 12

(i) Show that for an orthonormal basis $|\delta_j\rangle$ we have the completeness relation

$$\sum_{k} \left| \delta_k \right\rangle \left\langle \delta^k \right| = \hat{\mathbb{1}}.$$

- (ii) Consider a product of two operators $\hat{C} = \hat{A}\hat{B}$. Remember that the matrix elements of the operator \hat{A} in the orthonormal basis $|\delta_j\rangle$ were defined as $A^j{}_k \equiv \langle \delta^j | \hat{A} | \delta_k \rangle$. Show that the components of \hat{C} are given by the usual product of matrices.
- (iii) Show that the operator \hat{A} can be reconstructed from its components via

$$\hat{A} = \sum_{jk} A^{j}{}_{k} \left| \delta_{j} \right\rangle \left\langle \delta^{k} \right|$$

Exercise 13

It was shown in the lecture that the matrix elements of the conjugate operator are

$$\left\langle \delta^{j} \left| \hat{C}^{\dagger} \left| \delta_{l} \right\rangle = \left[\left\langle \delta^{l} \left| \hat{C} \left| \delta_{j} \right\rangle \right]^{*} \right]^{*}$$

i.e. the matrix of components is complex conjugate transpose. Use this to show that $(\hat{A}\hat{B})^{\dagger} = \hat{B}^{\dagger}\hat{A}^{\dagger}$.

Exercise 14 (central tutorial)

Consider a change of orthonormal basis $|\delta\rangle \rightarrow \left|\tilde{\delta}\right\rangle$ in the Hilbert space described by $U^{j}_{k} \equiv \left\langle \tilde{\delta}^{j} | \delta_{k} \right\rangle$.

- (i) Show that $U^{j}{}_{k}$ are components of unitary matrix, i.e. $(U^{\dagger})^{j}{}_{k} = (U^{k}{}_{j})^{*} = (U^{-1})^{j}{}_{k}$.
- (ii) Show that the components of bra vectors in the old and in the new basis are related by

$$\tilde{\psi}_k = \sum_j \psi_j (U^\dagger)^j{}_\mu$$

(iii) Show that the matrix elements of operators transform as

$$\tilde{A}^j_m = \sum_{kl} U^j{}_k A^k{}_l (U^\dagger)^l{}_m$$

Exercise 15

Consider a Hermitian operator \hat{A} and a unitary operator \hat{U} .

- (i) Show that the trace of the operator \hat{A} is independent of the choice of the basis. What property of the trace follows from the hermiticity of \hat{A} ?
- (ii) How are spectra of \hat{A} and of $\hat{U}\hat{A}\hat{U}^{\dagger}$ related?

Exercise 16

Consider a linear operator acting on a Hilbert space such that it maps one orthonormal basis into another one, $\hat{U} |\delta_j\rangle = |\delta'_j\rangle$. How can you write this operator in terms of basis vectors? Find its hermitian conjugate.

Exercise 17 (central tutorial)

The position operator \hat{x} is hermitian. The momenum operator satisfies the commutation relation

$$[\hat{x}, \hat{p}] = i\hbar\hat{\mathbb{1}}.$$

Does this imply that \hat{p} is a hermitian operator? Can there exist finite dimensional matrices \hat{x} and \hat{p} which satisfy these commutation relations?

Exercise 18 (central tutorial)

Check by direct calculation that

$$\int dq'' \left[X^{q}{}_{q''} P^{q''}{}_{q'} - P^{q}{}_{q''} X^{q''}{}_{q'} \right] = i\hbar\delta^{q}_{q'} = i\hbar\delta(q-q')$$

where the matrix elements of \hat{X} are $X^{q}{}_{q'} \equiv \langle q | \hat{X} | q' \rangle$ and similarly for \hat{P} .