Exercises on Quantum Mechanics II (TM1/TV)

Problem set 1, discussed October 21 - October 25, 2019

Exercise 1

Recall that in a vector space \mathcal{V} the following axioms have to be fulfilled:
Let $|\psi\rangle,|\phi\rangle \in \mathcal{V}$ and $a, b \in \mathbb{C}$, then:

1) $a(|\psi\rangle+|\phi\rangle)=a|\psi\rangle+a|\phi\rangle$ and $(a+b)|\psi\rangle=a|\psi\rangle+b|\psi\rangle$
2) $a(b|\psi\rangle)=b(a|\psi\rangle)$
3) $\exists \mathbf{0} \in \mathcal{V}$ such that $\forall|\psi\rangle \in \mathcal{V}, 0 \cdot|\psi\rangle=\mathbf{0}$
4) $1 \cdot|\psi\rangle=|\psi\rangle$

Show that:
(i) $|\psi\rangle+\mathbf{0}=|\psi\rangle$
(ii) $a(|\phi\rangle-|\psi\rangle)=a|\phi\rangle-a|\psi\rangle$

Exercise 2

Let \mathcal{V} be a \mathbb{C} vector space.
(i) What are the necessary conditions on all $|\psi\rangle \in \mathcal{V}$ for \mathcal{V} to be a Hilbert space?
(ii) Now let $|\psi\rangle$ be an ordered sequence of complex numbers ψ_{i}, where $\sum_{i}\left|\psi_{i}\right|^{2}<\infty$. Is it possible to define a scalar product (\bullet, \bullet) according to $(|\psi\rangle,|\phi\rangle)=\sum_{i} \psi_{i}^{*} \phi_{i}$?
(iii) Is it possible to define a hermitian scalar product (\bullet, \bullet) according to $(|\psi\rangle,|\phi\rangle)=\sum_{i} \psi_{i} \phi_{i}$?

Exercise 3 (central tutorial)

Take the set $L^{2}(a, b)$ of all complex square integrable functions on the interval $[a, b]$ and the canonical addition map and scalar product as:

1) $\psi, \phi \in L^{2}(a, b):(\psi+\phi)(x):=\psi(x)+\phi(x)$
2) $(\psi, \phi):=\int_{a}^{b} \psi^{*}(x) \phi(x) \mathrm{d} x$

Show that the emerging space \mathcal{T}_{F} is a Hilbert space.

Exercise 4 (central tutorial)

Let \mathcal{H} and \mathcal{H}^{*} be Hilbert spaces dual to each other. A bra vector $\langle\phi| \in \mathcal{H}^{*}$ corresponding to a ket vector $|\phi\rangle \in \mathcal{H}$ is defined via the scalar product as $\langle\phi \mid \chi\rangle \equiv(|\phi\rangle,|\chi\rangle)$.
Take $|\Psi\rangle=a|\phi\rangle+b|\psi\rangle \in \mathcal{H}$ and $\langle\Phi|=a^{*}\langle\phi|+b^{*}\langle\psi| \in \mathcal{H}^{*}$. Show that $\langle\Phi|$ corresponds to $|\Psi\rangle$, i.e. $\langle\Phi|=\langle\Psi|$.

Exercise 5

Let \mathcal{H} be a Hilbert space with respect to the inner product $\langle\bullet \mid \bullet\rangle$. Prove the Cauchy-Schwartz inequality $|\langle\psi \mid \phi\rangle| \leq \||\psi\rangle\| \||\phi\rangle \|$, where $\||\psi\rangle \|=\sqrt{\langle\psi \mid \psi\rangle}$.

Exercise 6 (central tutorial)

The set $\left\{\left|\phi_{i}\right\rangle\right\}$ forms a basis of the Hilbert space \mathcal{H}. Prove the sequence

$$
\left|\chi_{1}\right\rangle=\frac{\left|\phi_{1}\right\rangle}{\|\left|\phi_{1}\right\rangle \|}, \quad\left|\chi_{k}\right\rangle=\frac{\left|\phi_{k}\right\rangle-\sum_{j=1}^{k-1}\left\langle\chi_{j} \mid \phi_{k}\right\rangle\left|\chi_{j}\right\rangle}{\|\left|\phi_{k}\right\rangle-\sum_{j=1}^{k-1}\left\langle\chi_{j} \mid \phi_{k}\right\rangle\left|\chi_{j}\right\rangle \|} \quad \forall k>1
$$

forms an orthonormal basis of \mathcal{H}.

Exercise 7

Let \mathcal{T}_{F} be the Hilbert space of square integrable complex functions defined in Exercise 3.
(i) Which of the following operators are linear operators?

$$
\hat{A}=(\bullet)^{2}, \hat{B}=\frac{\mathrm{d}}{\mathrm{~d} x}(\bullet), \hat{C}=\frac{\mathrm{d}^{2}}{\mathrm{~d} x^{2}}(\bullet), \hat{D}=g(x)(\bullet), \hat{E}=g(x)(\bullet)^{3}
$$

(ii) Which of the following symbols can be interpreted as operators on \mathcal{T}_{F} ?
a) $\int \psi(x)(\bullet) \mathrm{d} x$
b) $\int(\bullet) k(x, y)(*) \mathrm{d} x \mathrm{~d} y$
c) $\int k(x, y)(\bullet) \mathrm{d} x$

Exercise 8

Let $\hat{A}, \hat{B}, \hat{C}$ be linear operators acting on a Hilbert space. Prove

$$
\hat{A}(\hat{B}+\hat{C})=\hat{A} \hat{B}+\hat{A} \hat{C}
$$

General information

The lecture takes place on:
Monday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
The central tutorial takes place on Monday at 12:00-14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

```
https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II
```

