Prof. Dr. Viatcheslav Mukhanov

Winter term 2019/2020

Exercises on Quantum Mechanics II (TM1/TV) Problem set 1, discussed October 21 - October 25, 2019

Exercise 1

Recall that in a vector space \mathcal{V} the following axioms have to be fulfilled: Let $|\psi\rangle$, $|\phi\rangle \in \mathcal{V}$ and $a, b \in \mathbb{C}$, then: 1) $a(|\psi\rangle + |\phi\rangle) = a |\psi\rangle + a |\phi\rangle$ and $(a + b) |\psi\rangle = a |\psi\rangle + b |\psi\rangle$ 2) $a(b |\psi\rangle) = b(a |\psi\rangle)$ 3) $\exists \mathbf{0} \in \mathcal{V}$ such that $\forall |\psi\rangle \in \mathcal{V}, 0 \cdot |\psi\rangle = \mathbf{0}$ 4) $1 \cdot |\psi\rangle = |\psi\rangle$ Show that:

- (i) $|\psi\rangle + \mathbf{0} = |\psi\rangle$
- (ii) $a(|\phi\rangle |\psi\rangle) = a |\phi\rangle a |\psi\rangle$

Exercise 2

Let \mathcal{V} be a \mathbb{C} vector space.

- (i) What are the necessary conditions on all $|\psi\rangle \in \mathcal{V}$ for \mathcal{V} to be a Hilbert space?
- (ii) Now let $|\psi\rangle$ be an ordered sequence of complex numbers ψ_i , where $\sum_i |\psi_i|^2 < \infty$. Is it possible to define a scalar product (\bullet, \bullet) according to $(|\psi\rangle, |\phi\rangle) = \sum \psi_i^* \phi_i$?
- (iii) Is it possible to define a hermitian scalar product (\bullet, \bullet) according to $(|\psi\rangle, |\phi\rangle) = \sum_{i} \psi_i \phi_i$?

Exercise 3 (central tutorial)

Take the set $L^2(a, b)$ of all complex square integrable functions on the interval [a, b] and the canonical addition map and scalar product as: 1) $\psi, \phi \in L^2(a, b): (\psi + \phi)(x) := \psi(x) + \phi(x)$

2)
$$(\psi, \phi) := \int_a^b \psi^*(x)\phi(x)\mathrm{d}x$$

Show that the emerging space \mathcal{T}_F is a Hilbert space.

Exercise 4 (central tutorial)

Let \mathcal{H} and \mathcal{H}^* be Hilbert spaces dual to each other. A bra vector $\langle \phi | \in \mathcal{H}^*$ corresponding to a ket vector $|\phi\rangle \in \mathcal{H}$ is defined via the scalar product as $\langle \phi | \chi \rangle \equiv (|\phi\rangle, |\chi\rangle)$. Take $|\Psi\rangle = a |\phi\rangle + b |\psi\rangle \in \mathcal{H}$ and $\langle \Phi | = a^* \langle \phi | + b^* \langle \psi | \in \mathcal{H}^*$. Show that $\langle \Phi |$ corresponds to $|\Psi\rangle$, i.e. $\langle \Phi | = \langle \Psi |$.

Exercise 5

Let \mathcal{H} be a Hilbert space with respect to the inner product $\langle \bullet | \bullet \rangle$. Prove the Cauchy-Schwartz inequality $|\langle \psi | \phi \rangle| \leq || \psi \rangle || || \phi \rangle ||$, where $|| \psi \rangle || = \sqrt{\langle \psi | \psi \rangle}$.

Exercise 6 (central tutorial)

The set $\{|\phi_i\rangle\}$ forms a basis of the Hilbert space \mathcal{H} . Prove the sequence

$$|\chi_1\rangle = \frac{|\phi_1\rangle}{\||\phi_1\rangle\|}, \quad |\chi_k\rangle = \frac{|\phi_k\rangle - \sum_{j=1}^{k-1} \langle \chi_j |\phi_k\rangle |\chi_j\rangle}{\left\||\phi_k\rangle - \sum_{j=1}^{k-1} \langle \chi_j |\phi_k\rangle |\chi_j\rangle\right\|} \quad \forall k > 1$$

forms an orthonormal basis of \mathcal{H} .

Exercise 7

Let \mathcal{T}_F be the Hilbert space of square integrable complex functions defined in Exercise 3.

(i) Which of the following operators are linear operators?

$$\hat{A} = (\bullet)^2, \hat{B} = \frac{\mathrm{d}}{\mathrm{d}x}(\bullet), \hat{C} = \frac{\mathrm{d}^2}{\mathrm{d}x^2}(\bullet), \hat{D} = g(x)(\bullet), \hat{E} = g(x)(\bullet)^3$$

(ii) Which of the following symbols can be interpreted as operators on \mathcal{T}_F ?

a) $\int \psi(x)(\bullet) dx$

- b) $\int (\bullet) k(x,y)(*) \mathrm{d}x \mathrm{d}y$
- c) $\int k(x,y)(\bullet) dx$

Exercise 8

Let $\hat{A}, \hat{B}, \hat{C}$ be linear operators acting on a Hilbert space. Prove

$$\hat{A}(\hat{B}+\hat{C}) = \hat{A}\hat{B} + \hat{A}\hat{C}$$

General information

The lecture takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37) Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37) The *central tutorial* takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstraße 37) The *webpage* for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II