Exercises on Quantum Mechanics II (TM1/TV)

Problem set 8, discussed December 9 - December 13, 2019

Exercise 48

Consider the motion of a particle in a potential $V(q(t))$. Show that the second order of the perturbation expansion of the propagator $K(f, i)=K\left(q_{f}, q_{i} ; t_{f}, t_{i}\right)$ can be written as

$$
K^{(2)}(f, i)=-\frac{1}{\hbar^{2}} \int_{t_{i}}^{t_{f}} \mathrm{~d} t_{I I} \int_{t_{i}}^{t_{I I}} \mathrm{~d} t_{I} \int_{-\infty}^{+\infty} \mathrm{d} q_{I I} \int_{-\infty}^{+\infty} \mathrm{d} q_{I} K^{(0)}(f, I I) V(I I) K^{(0)}(I I, I) V(I) K^{(0)}(I, i)
$$

Here $I I$ and I represent $\left(q_{I I}, t_{I I}\right)$ and $\left(q_{I}, t_{I}\right)$ respectively and $t_{I I}>t_{I}$.

Exercise 49 (central tutorial)

For solving problems in perturbation theory and initial value problems the Green's function plays an important role. It is defined as the solution to the equation

$$
\begin{equation*}
\hat{H}_{x} G(\underline{x}, \underline{y})=\delta(\underline{x}-\underline{y}) \tag{1}
\end{equation*}
$$

where \hat{H}_{x} is a linear operator acting on x. We want to calculate the Green's function of a massive particle.
(i) The Hamiltonian of the free particle is given by $\hat{H}_{0}=\frac{\hat{p}^{2}}{2 m}$. Choose $z \in \mathbb{C}$ such that $\hat{H}_{0}-z$ has an inverse defined as $\langle\underline{x}|\left(\hat{H}_{0}-z\right)\left(\hat{H}_{0}-z\right)^{-1}\left|\underline{x}^{\prime}\right\rangle=\delta\left(\underline{x}-\underline{x}^{\prime}\right)$. Prove that $\left(\hat{H}_{0}-z\right)^{-1}$ satisfying

$$
\begin{equation*}
\langle\underline{p}| \frac{1}{\hat{H}_{0}-z}\left|\underline{p^{\prime}}\right\rangle=\delta\left(\underline{p}-\underline{p}^{\prime}\right)\left(\frac{\underline{p}^{\prime 2}}{2 m}-z\right)^{-1} \tag{2}
\end{equation*}
$$

is the inverse of $\hat{H}_{0}-z$.
(Use that $\langle\underline{x} \mid \underline{p}\rangle=(2 \pi \hbar)^{-d / 2} \mathrm{e}^{\frac{i}{\hbar} \underline{p} \underline{x}}$, where d is the dimension of \underline{x} and \underline{p}.)
(ii) $\left(\hat{H}_{0}-z\right)^{-1}$ is called the resolvent of \hat{H}_{0}. Show that for $d=3$ one has

$$
\begin{equation*}
\langle\underline{x}| \frac{1}{\hat{H}_{0}-z}\left|\underline{x}^{\prime}\right\rangle=\frac{m}{2 \pi \hbar^{2}\left|\underline{x}^{\prime}-\underline{x}\right|} \exp \left(\frac{i}{\hbar} \sqrt{2 m z}\left|\underline{x}^{\prime}-\underline{x}\right|\right) \tag{3}
\end{equation*}
$$

(iii) For which values of m and z is (3) a Green's function of the linear operator $-\Delta+k^{2}$.
(iv) By taking the limit $z \rightarrow 0$ we get a Green's function for \hat{H}_{0}. However in certain cases one encounters singularies when taking this limit. One example is the one dimensional resolvent of \hat{H}_{0}. Derive the analogue of (3) for $d=1$.
(v) By taking the limit $z \rightarrow 0$ a singularity arises. In order to avoid that define:

$$
\begin{equation*}
G(x, y)=\lim _{z \rightarrow 0}\left[\langle\underline{x}| \frac{1}{\hat{H}_{0}-z}\left|\underline{x}^{\prime}\right\rangle-\sum_{i=-\infty}^{+\infty} A_{i}(x, y)(\sqrt{z})^{i}\right] \tag{4}
\end{equation*}
$$

Which conditions do the coefficients $A_{i}(x, y)$ have to fulfill such that $G(x, y)$ converges and is a Green's function of \hat{H}_{0} ?
(vi) Consider the one dimensional electrostatic problem

$$
\begin{align*}
\frac{\mathrm{d}^{2} \phi(x)}{\mathrm{d} x^{2}} & =f(x) \\
\phi(x) & =0 \text { for } x \rightarrow-\infty \tag{5}
\end{align*}
$$

where $f(x)$ has compact support on $[0, L]$. Derive an integral expression for $\phi(x)$ which solves (5). Show that the boundary condition in (5) fixes the remaining free parameter A_{0}. What is the physical interpretation of this model?

Exercise 50

Using the definitions given in the lecture, calculate the differential cross section $\frac{\mathrm{d} \sigma}{\mathrm{d} \Omega}$ and the total cross section $\sigma_{t o t}$ for the Yukawa potential:

$$
\begin{equation*}
V(r)=\frac{V_{0} \mathrm{e}^{-r / \alpha}}{r} \tag{6}
\end{equation*}
$$

Check your result by taking the limit $\alpha \rightarrow \infty$. For the differential cross section you should get the Rutherford cross section.

Exercise 51 (central tutorial)

Consider the Hamiltonian $\hat{H}=\hat{H}_{0}+\hat{V}=\frac{\hat{p}^{2}}{2 m}+\lambda \delta(x)$. The eigenstates $|k\rangle$ with eigenvalue $\frac{k^{2}}{2 m}$ of this Hamiltonian are given by

$$
\begin{equation*}
|k\rangle=|\bar{k}\rangle-\frac{1}{\hat{H}_{0}-\frac{k^{2}}{2 m}-i \epsilon} \hat{V}|k\rangle \tag{7}
\end{equation*}
$$

where $|\bar{k}\rangle$ are the eigenstates of the free Hamiltonian with $\langle x \mid \bar{k}\rangle=\frac{1}{\sqrt{2 \pi \hbar}} \mathrm{e}^{\frac{i}{\hbar} x k}$.
(i) Using the result for the resolvent in one dimension from Exercise 49 calculate $\langle x \mid k\rangle$.
(ii) $|k\rangle$ as a function in k has a simple pole. Find the position k_{0} of this pole and evaluate the residue $|\Psi\rangle:=\operatorname{Res}_{k=k_{0}}\{|k\rangle\}$ of it.
(iii) Show that for $\lambda<0,|\Psi\rangle$ is a bound state (normalizable eigenstate) of \hat{H}.
(iv) Extract the transmission and reflection coefficients from the explicit expression of $|k\rangle$.

Exercise 52

Consider the Hamiltonian $\hat{H}=\frac{\hat{p}^{2}}{2 m}+\hat{V}$ in one dimension where the potential is given by

$$
V(x)= \begin{cases}0 & \text { for } x<0 \tag{8}\\ V_{0} & \text { for } x \geq 0\end{cases}
$$

(i) Make the following ansatz for the wave function $\psi(x)$

$$
\psi(x)= \begin{cases}A \mathrm{e}^{i k_{1} x}+B \mathrm{e}^{-i k_{1} x} & \text { for } x<0 \tag{9}\\ C \mathrm{e}^{i k_{2} x}+D \mathrm{e}^{-i k_{2} x} & \text { for } x \geq 0\end{cases}
$$

and solve the time independent Schrödinger equation to get expressions for k_{1} and k_{2}.
(ii) By matching the boundary conditions $\lim _{x \rightarrow 0^{+}} \psi(x)=\lim _{x \rightarrow 0^{-}} \psi(x)$ and $\lim _{x \rightarrow 0^{+}} \psi^{\prime}(x)=\lim _{x \rightarrow 0^{-}} \psi^{\prime}(x)$ find a relation between the coefficients A, B, C and D. Why do these boundary conditions make sense?
(iii) Find the transmission and reflection coefficient for a wave coming from $-\infty$.

