Prof. Dr. Viatcheslav Mukhanov

Winter term 2019/2020

Exercises on Quantum Mechanics II (TM1/TV)Problem set 8, discussed December 9 - December 13, 2019

Exercise 48

Consider the motion of a particle in a potential V(q(t)). Show that the second order of the perturbation expansion of the propagator $K(f, i) = K(q_f, q_i; t_f, t_i)$ can be written as

Here II and I represent (q_{II}, t_{II}) and (q_I, t_I) respectively and $t_{II} > t_I$.

Exercise 49 (central tutorial)

For solving problems in perturbation theory and initial value problems the Green's function plays an important role. It is defined as the solution to the equation

$$\hat{H}_x G(\underline{x}, \underline{y}) = \delta(\underline{x} - \underline{y}) \tag{1}$$

where \hat{H}_x is a linear operator acting on x. We want to calculate the Green's function of a massive particle.

(i) The Hamiltonian of the free particle is given by $\hat{H}_0 = \frac{\hat{p}^2}{2m}$. Choose $z \in \mathbb{C}$ such that $\hat{H}_0 - z$ has an inverse defined as $\left\langle \underline{x} \middle| (\hat{H}_0 - z)(\hat{H}_0 - z)^{-1} \middle| \underline{x}' \right\rangle = \delta(\underline{x} - \underline{x}')$. Prove that $(\hat{H}_0 - z)^{-1}$ satisfying

$$\left\langle \underline{p} \left| \frac{1}{\hat{H}_0 - z} \left| \underline{p}' \right\rangle = \delta(\underline{p} - \underline{p}') \left(\frac{\underline{p}'^2}{2m} - z \right)^{-1}$$
(2)

is the inverse of $\hat{H}_0 - z$. (Use that $\langle \underline{x} | \underline{p} \rangle = (2\pi\hbar)^{-d/2} e^{\frac{i}{\hbar} \underline{p} \underline{x}}$, where d is the dimension of \underline{x} and \underline{p} .)

(ii) $(\hat{H}_0 - z)^{-1}$ is called the *resolvent* of \hat{H}_0 . Show that for d = 3 one has

$$\left\langle \underline{x} \left| \frac{1}{\hat{H}_0 - z} \left| \underline{x}' \right\rangle = \frac{m}{2\pi\hbar^2 \left| \underline{x}' - \underline{x} \right|} \exp\left(\frac{i}{\hbar}\sqrt{2mz} \left| \underline{x}' - \underline{x} \right|\right)$$
(3)

- (iii) For which values of m and z is (3) a Green's function of the linear operator $-\Delta + k^2$.
- (iv) By taking the limit $z \to 0$ we get a Green's function for \hat{H}_0 . However in certain cases one encounters singularies when taking this limit. One example is the one dimensional resolvent of \hat{H}_0 . Derive the analogue of (3) for d = 1.
- (v) By taking the limit $z \to 0$ a singularity arises. In order to avoid that define:

$$G(x,y) = \lim_{z \to 0} \left[\left\langle \underline{x} \left| \frac{1}{\hat{H}_0 - z} \left| \underline{x}' \right\rangle - \sum_{i = -\infty}^{+\infty} A_i(x,y) (\sqrt{z})^i \right] \right]$$
(4)

Which conditions do the coefficients $A_i(x, y)$ have to fulfill such that G(x, y) converges and is a Green's function of \hat{H}_0 ?

(vi) Consider the one dimensional electrostatic problem

$$\frac{\mathrm{d}^2\phi(x)}{\mathrm{d}x^2} = f(x)$$

$$\phi(x) = 0 \text{ for } x \to -\infty \tag{5}$$

where f(x) has compact support on [0, L]. Derive an integral expression for $\phi(x)$ which solves (5). Show that the boundary condition in (5) fixes the remaining free parameter A_0 . What is the physical interpretation of this model?

Exercise 50

Using the definitions given in the lecture, calculate the differential cross section $\frac{d\sigma}{d\Omega}$ and the total cross section σ_{tot} for the Yukawa potential:

$$V(r) = \frac{V_0 \mathrm{e}^{-r/\alpha}}{r} \tag{6}$$

Check your result by taking the limit $\alpha \to \infty$. For the differential cross section you should get the Rutherford cross section.

Exercise 51 (central tutorial)

Consider the Hamiltonian $\hat{H} = \hat{H}_0 + \hat{V} = \frac{\hat{p}^2}{2m} + \lambda \delta(x)$. The eigenstates $|k\rangle$ with eigenvalue $\frac{k^2}{2m}$ of this Hamiltonian are given by

$$|k\rangle = \left|\bar{k}\right\rangle - \frac{1}{\hat{H}_0 - \frac{k^2}{2m} - i\epsilon}\hat{V}|k\rangle \tag{7}$$

where $|\bar{k}\rangle$ are the eigenstates of the free Hamiltonian with $\langle x | \bar{k} \rangle = \frac{1}{\sqrt{2\pi\hbar}} e^{\frac{i}{\hbar}xk}$.

- (i) Using the result for the resolvent in one dimension from Exercise 49 calculate $\langle x | k \rangle$.
- (ii) $|k\rangle$ as a function in k has a simple pole. Find the position k_0 of this pole and evaluate the residue $|\Psi\rangle := \operatorname{Res}_{k=k_0}\{|k\rangle\}$ of it.
- (iii) Show that for $\lambda < 0$, $|\Psi\rangle$ is a bound state (normalizable eigenstate) of \hat{H} .
- (iv) Extract the transmission and reflection coefficients from the explicit expression of $|k\rangle$.

Exercise 52

Consider the Hamiltonian $\hat{H} = \frac{\hat{p}^2}{2m} + \hat{V}$ in one dimension where the potential is given by

$$V(x) = \begin{cases} 0 & \text{for } x < 0\\ V_0 & \text{for } x \ge 0 \end{cases}$$
(8)

(i) Make the following ansatz for the wave function $\psi(x)$

$$\psi(x) = \begin{cases} A e^{ik_1 x} + B e^{-ik_1 x} & \text{for } x < 0\\ C e^{ik_2 x} + D e^{-ik_2 x} & \text{for } x \ge 0 \end{cases}$$
(9)

and solve the time independent Schrödinger equation to get expressions for k_1 and k_2 .

- (ii) By matching the boundary conditions $\lim_{x\to 0^+} \psi(x) = \lim_{x\to 0^-} \psi(x)$ and $\lim_{x\to 0^+} \psi'(x) = \lim_{x\to 0^-} \psi'(x)$ find a relation between the coefficients A, B, C and D. Why do these boundary conditions make sense?
- (iii) Find the transmission and reflection coefficient for a wave coming from $-\infty$.