Exercises on Quantum Mechanics II (TM1/TV)

Problem set 5, discussed November 18 - November 22, 2019

Exercise 31

(i) Calculate $\hat{q} \hat{p}^{2} \hat{q}-\hat{p} \hat{q}^{2} \hat{p}$.
(ii) Write the Hamiltonian $\hat{H}=\hat{q} \hat{p}^{2} \hat{q}$ in canonical form, which corresponds to moving \hat{p} operators to the left of \hat{q}.

Exercise 32 (Central tutorial)

Consider the action

$$
\begin{equation*}
S=\int_{t_{i}}^{t_{f}} d t(p \dot{q}-H(p, q)) \tag{1}
\end{equation*}
$$

and treat $q(t)$ and $p(t)$ as independent variables.
(i) Derive the Hamilton equations of motions from the variation of the action. What are the required boundary conditions on the variation δq and δp ?
(ii) Show that if the Hamiltonian is not explicitly time dependent, i.e. $H(p, q, t)=H(p, q)$, then $\frac{\mathrm{d} H}{\mathrm{~d} t}=0$.

Exercise 33 (Central tutorial)

(i) Generalise the Hamiltonian equations of motion to systems with N degrees of freedom p_{i} and q_{i}, $i=1, \ldots, N$.

We now move to the field theory case where we have $N \rightarrow \infty$. The generalised coordinates become $q_{i}(t) \rightarrow \phi_{\boldsymbol{x}}(t)=\phi(t, \boldsymbol{x})$ and $p_{i}(t) \rightarrow \pi_{\boldsymbol{x}}(t)=\pi(t, \boldsymbol{x})$, where $\phi(t, \boldsymbol{x})$ is the scalar field and $\pi(t, \boldsymbol{x})$ is the canonical momentum.
(ii) Consider the action of a massless and free scalar field $\phi=\phi(t, \boldsymbol{x})$ in 4 dimensions,

$$
\begin{equation*}
S\left[\phi, \partial_{\mu} \phi\right]=\frac{1}{2} \int d^{4} x \partial_{\mu} \phi \partial^{\mu} \phi=\frac{1}{2} \int d t d^{3} x\left[\left(\partial_{t} \phi\right)^{2}-(\nabla \phi)^{2}\right] \tag{2}
\end{equation*}
$$

where the summation over a Greek index runs over all dimensions $\mu=1, \ldots, 4$, and $\partial_{0}=\partial_{t}, \partial_{1}=\partial_{x}$, etc.. (By convention summation over Roman indices runs over spatial dimensions $i=1,2,3$ only, i.e. $\left.(\nabla \phi)^{2}=\partial_{i} \phi \partial^{i} \phi.\right)$
a) Use the Lagrangian density \mathcal{L}, where

$$
S=\int d t L=\int d^{4} x \mathcal{L}
$$

to find the canonical momenta $\pi(t, \boldsymbol{x})$.
b) Find the Hamiltonian $H(\phi, \pi)$.
c) Derive the Lagrange equation of motion.
d) Derive Hamilton's equations of motion.

Exercise 34

Prove that:

$$
\begin{equation*}
\left[\hat{p}, \hat{p}^{n} \hat{q}^{m}\right]=-i \hbar \frac{\partial}{\partial \hat{q}}\left(\hat{p}^{n} \hat{q}^{m}\right) \tag{3}
\end{equation*}
$$

Exercise 35

Does the hermiticity of \hat{H} follow from the unitarity of the time evolution operator?

Exercise 36

Let's consider the Hamiltonian

$$
\begin{equation*}
\hat{H}=\hat{H}_{0}+\hat{V} \tag{4}
\end{equation*}
$$

(i) Show that the equation

$$
\begin{equation*}
\frac{\partial \hat{\rho}_{u}}{\partial \beta}=-\hat{H} \hat{\rho}_{u} \tag{5}
\end{equation*}
$$

can be written in the integral form:

$$
\begin{equation*}
\hat{\rho}_{u}(\beta)=\hat{\rho}_{0}(\beta)-\int_{0}^{\beta} d \beta^{\prime} \hat{\rho}_{0}\left(\beta-\beta^{\prime}\right) \hat{V} \hat{\rho}_{u}\left(\beta^{\prime}\right) \quad \text { with } \quad \hat{\rho}_{0}(\beta)=e^{-\beta \hat{H}_{0}} \tag{6}
\end{equation*}
$$

(ii) Now let \hat{V} be a small perturbation, $\hat{V} \ll \hat{H}_{0}$. Find the first order in perturbation theory for $\rho\left(\boldsymbol{x}, \boldsymbol{x}^{\prime} ; \beta\right)$ with $\hat{V}=V(\hat{x})$.

General information

The lecture takes place on:
Monday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00-12:00 c.t. in B 052 (Theresienstraße 37)
The central tutorial takes place on Monday at 12:00-14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

