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Exercise 72 - Central Tutorial
One way to understand the ability of quantum mechanics to protect from information detection is from the
fact that non-orthogonal states cannot be perfectly distinguished.

(i) In the course of a quantum key distribution protocol, suppose that Alice randomly chooses one of the
following two states and transmits it to Bob:

|φ0〉 =
1√
2
(| 0〉+ | 1〉), or |φ1〉 =

1√
2
(| 0〉+ i | 1〉). (1)

Eve intercepts the qubit and performs a measurement to identify the state. The measurement consists
of the orthogonal states |ψ0〉 and |ψ1〉, and Eve guesses the transmitted state was |φ0〉 when she
obtains the outcome |ψ0〉, and so forth. What is the probability that Eve correctly guesses the state,
averaged over Alice’s choice of the state for a given measurement? What is the optimal measurement
Eve should make, and what is the resulting optimal guessing probability?

(ii) Now suppose Alice randomly chooses between two states |φ0〉 and |φ1〉 separated by an angle θ on
the Bloch sphere. What is the measurement which optimizes the guessing probability? What is the
resulting probability of correctly identifying the state, expressed in terms of θ? In terms of the states?
Hint: Review the main results from exercise 60 and think about how to represent the measurement
probability P = |〈a | b〉|2 in terms of Block sphere vectors.

Solution

(i) The the probability of correctly guessing, averaged over Alice’s choice of the state is

Pguess =
1

2

(
|〈ψ0 |φ0〉|2 + |〈ψ1 |φ1〉|2

)
. (2)

To optimize the choice of measurement, suppose |ψ0〉 = a | 0〉 + b | 1〉 for some a, b ∈ C such that
|a|2 + |b|2 = 1. Then |ψ1〉 = −b∗ | 0〉+ a∗ | 1〉 is orthogonal as intended. Using this in eq. 2,

Pguess =
1

2

(∣∣∣∣ 1√
2
(a∗ + b∗)

∣∣∣∣2 + ∣∣∣∣ 1√
2
(−b+ ia)

∣∣∣∣2
)

=
1

2

(
1 + 2Re

[(
1− i
2

)
ab∗
])

. (3)

If we express a = αeiθ and b = βeiη for α, β, θ, η ∈ R, then we get

Pguess =
1

2

(
1 + 2αβRe

[(
1− i
2

)
ei(θ−η)

])
. (4)

To maximize, we ought to choose α = β = 1/
√
2 and we may set η = 0 since only the difference θ− η

is relevant. Now we have

Pguess =
1

2

(
1 + Re

[(
1− i
2

)
eiθ
])

=
1

2

(
1 +

1√
2
Re
[
e−iπ/4eiθ

])
. (5)



from which it is clear that the best thing to do is to set θ = π/4 to get

Pguess =
1

2

(
1 +

1√
2

)
≈ 85.4%. (6)

The basis states making up the measurement are

|ψ0〉 =
1√
2

(
eiπ/4 | 0〉+ | 1〉

)
|ψ1〉 =

1√
2

(
− | 0〉+ e−iπ/4 | 1〉

)
.

(7)

(ii) Probability of measurement in terms of Bloch sphere vectors: Recall from exercise 60 that a general
state of any two state system can be represented as a vector on the Bloch sphere, | r〉 ↔ r. One can
then express the state on the Bloch sphere as a density matrix,

ρr =
1

2
(1 + r · σ). (8)

The probability of measuring a system in a state |m〉 ↔m then is

Pr(m) = |〈m | r〉|2 = 〈m | r〉 〈r |m〉 = 〈m | ρ̂r |m〉 = tr(|m〉 〈m | ρ̂r) = tr(ρ̂mρ̂r). (9)

Now using eq. 8 and the identities tr(σi) = 0, tr(σiσj) = 2δij , one can easily verify

Pr(m) =
1

2
(1 + r ·m). (10)

The point of this exercise is to show that thinking in terms of the Bloch sphere is a lot more intuitive
than just taking a brute force approach as we did in the solution of the previous exercise. Let n0 and
n1 be the Bloch vectors of the two states. Call m the Bloch vector associated with one of the two
basis vectors of the measurement, specifically the one which indicates that the state is |φ0〉 (the other
is associated with −m̂). The guessing probability takes the form

Pguess =
1

2

(
|〈ψ0 |φ0〉|2 + |〈ψ1 |φ1〉|2

)
=

1

2

(
1

2
(1 + n0 ·m) +

1

2
(1− n1 ·m)

)
=

1

4
(2 +m · (n0 − n1)) .

(11)

The optimal m̂ lies along n0 − n1 and has unit length, i.e

m =
n0 − n1

|n0 − n1|
=

n0 − n1√
2− 2 cos θ

(12)

Therefore,

Pguess =
1

4

(
2 +
√
2− 2 cos θ

)
=

1

2

(
1 + sin

θ

2

)
. (13)

Finally, we should check that this gives sensible results. When θ = 0, Pguess = 1/2, as it should. On the
other hand, the states |φk〉 are orthogonal for θ = π , and indeed Pguess = 1 in this case. In the previous
exercise we investigated the θ = π/2 and here we immediately find Pguess = 1

2

(
1 + 1√

2

)
, as before.

Exercise 73
Consider a system consisting of two coils as in the lecture, a superconducting coil with induction I and
current J = q̇ interacting with a second coil with current j(t) flowing in it. The latter is free to rotate,
where the angle about the rotation axis is denoted by ϕ and has moment of inertia T . The Lagrangian of
the system is given by

L =
1

2
Iq̇2 +

1

2
T ϕ̇2 −M0ϕq̇j(t), (14)



where in the interaction term, the mutual inductance is approximated by M(ϕ) ≈ M0ϕ, with M0 = const.
Verify that the Hamiltonian is given by

H =
p2q
2I

+
p2ϕ
2T

+
Ig2(t)ϕ2

2
+ g(t)ϕpq , (15)

where g(t) = M0

I j(t). Check that the condition for a non-demolition measurement is satisfied.

Solution First of all we obtain the conjugated momenta:

pq =
∂L

∂q̇
= Iq̇ −M0ϕj(t) , pϕ =

∂L

∂ϕ̇
= T ϕ̇ (16)

Inverting these relations to obtain q̇ and ϕ̇ in terms of the momenta we can plug them in H = pq q̇+pϕϕ̇−L.
After the trivial computation we obtain the desired result.
It is easily seen, that [p̂q, H] = 0, and before and after the measurement pq = Iq̇ and hence the state of the
system is unchanged after the measurement.

Exercise 74
Let pq in Exercise 73 be given by pq = −pϕ(tf )−pϕ(ti)

g04t − Ig0ϕ(ti). Why is the uncertainty 4pq bounded by

4pq ≥

√
4p2ϕ
g204t2

+ I2g204ϕ2
i ? (17)

Solution Neglecting correlations or assuming independent variables yields the common formula among
experimental physicists to calculate error propagation, the variance formula:

4pq =

√(
∂pq
∂pϕ

)2

4p2ϕ +

(
∂pq
∂ϕ

)2

4ϕ2 (18)

(It is important to note that this formula is a good estimation for the standard deviation as long as the
involved deviations are small enough, otherwise it receives corrections and becomes larger justifying the ≥.)

Therefore we straightforwardly obtain (17).

Exercise 75
Let τ̂ = m x̂

p̂ ≡
m
2 (x̂p̂

−1 + p̂−1x̂) be the “time operator” of a quantum clock. Check that the uncertainty
relation [τ̂ , Ê] = i~ is valid, where the “energy operator” Ê is given by p̂2/2m. Shortly interpret the result
compared to the violation of the energy-time uncertainty principle in the lecture.

Solution

[τ̂ , Ê] = τ̂ Ê − Êτ̂ =
1

4
(x̂p̂+ p̂−1x̂p̂2 − p̂2x̂p̂−1 − p̂x̂) = 1

4
(x̂p̂+ p̂−1(x̂p̂)p̂− p̂(p̂x̂)p̂−1 − p̂x̂) (19)

with x̂p̂ = p̂x̂+ i~ and p̂x̂ = x̂p̂− i~ follows

[τ̂ , Ê] = i~ (20)

We observe that for a proper/inertial/observable time the uncertainty principle holds while for the external
times (such that measurements are carried out with clocks that are not dynamically connected with the
objects studied in the experiment) used in the lecture it doesn’t. For the interested reader more information
can be found in section 3.2 of https://arxiv.org/pdf/quant-ph/0105049.pdf.

Solution



General information
The lecture takes place on:

Monday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)
Friday at 10:00 - 12:00 c.t. in B 052 (Theresienstraße 37)

The central tutorial takes place on Monday at 12:00 - 14:00 c.t. in B 139 (Theresienstraße 37)
The webpage for the lecture and exercises can be found at

https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_19_20/T_M1_TV_-Quantum-Mechanics-II


