Ludwig-Maximilians-Universität München Department of Physics

Prof. Dr. Ilka Brunner Dr. Cornelius Schmidt-Colinet

T_M1/TV: Quantum Mechanics II First Exam

18 February 2019

- Do not use any own material, except for a pen.
- Please write in blue or black. Do not use a pencil.
- Please make sure that each sheet of paper carries your name or ID (Matrikelnummer).
- Please indicate very clearly which problem any of your calculations/results belong to, and start a new page for each problem.
- Please answer the questions in English or German.
- The maximal number of points is 101.
- You will have 180 minutes to solve the exam.

I agree that my result will be published together with my ID on the lecture webpage. Signature: _____

Problem 1: Short questions [23 points]

- a) Consider the irreducible representation of so(3) with j = 1. Write down a matrix representation of the operators J_z and J_+ in the basis $|j, m\rangle$, where j is the spin and m the magnetic quantum number.
- b) Write down the time evolution operator U(t) in terms of the Hamilton operator H for the case that the Hamilton operator does not depend on time. Show that $U(t)\psi(x)$ for a (wave) function $\psi(x)$ satisfies the Schrödinger equation.
- c) Suppose your system consists of N identical copies of a two-level particle (*i.e.*, a single particle can occupy two states). What is the dimension of the Hilbert space if the particle is
 - i) bosonic?
 - ii) fermionic?
 - iii) neither (*i.e.*, if the particles were distinguishable)?
- d) In the following, we focus exclusively on the spin degrees of freedom of the system of particles under consideration.
 - i) Consider a system of two distinguishable particles of spin 1/2. We write $|\uparrow\rangle$ $(|\downarrow\rangle)$ for the one-particle state with S_z eigenvalue $\hbar/2$ $(-\hbar/2)$. Suppose the system is in the state

$$|\psi\rangle = \frac{1}{\sqrt{3}}|\uparrow\downarrow\rangle + \frac{i}{\sqrt{3}}|\uparrow\uparrow\rangle - \frac{1}{\sqrt{3}}|\downarrow\uparrow\rangle.$$

Are the particles entangled? Explain your answer briefly (verbal argument sufficient; you do not need to present formulae).

Problem 1: Short questions [continued]

ii) Now consider a system of 3 distinguishable particles of spin 1. Suppose the system is in the state

$$|\psi\rangle = \frac{1}{\sqrt{2}} \left(|1, 0, -1\rangle - |1, -1, 0\rangle \right),$$

where the nth label denotes the magnetic quantum number of the nth particle. Compute the reduced density matrix and the entanglement entropy

- α) for the first particle,
- β) for the third particle.
- e) Consider the following equations of motion for a wave function $\phi(x^{\mu})$ on Minkowski space:

$$\left(\frac{1}{c^2}\partial_t^2 \pm \vec{\nabla}^2 + \frac{m^2c^2}{\hbar^2}\right)\phi(x^{\mu}) = 0.$$

Here $\vec{\nabla}^2 = \partial_x^2 + \partial_y^2 + \partial_z^2$. Which choice of sign makes the equation Lorentz invariant? Explain your answer briefly in words.

Problem 2: Stark effect [16 points]

Consider a hydrogen atom in a constant electric field in z-direction. We want to use perturbation theory to study the resulting split of the energy levels. Recall that the energy eigenvalues E_n of the unperturbed hydrogen atom are n^2 degenerate. A convenient orthonormal basis is labeled by three integers $|n, \ell, m\rangle$, where $\ell = 0, \ldots, n-1$ and $m = -\ell, \ldots, \ell, n = 1, 2, \ldots$ The angular momentum operators act as

$$\vec{L}^2|n,\ell,m\rangle = \ell(\ell+1)|n,\ell,m\rangle, \quad L_z|n,\ell,m\rangle = m|n,\ell,m\rangle.$$

and application of the unperturbed Hamilton operator H_0 gives the energy eigenvalue E_n . The parity operator P acts on the wave functions as

$$P|n,\ell,m\rangle = (-1)^{\ell}|n,\ell,m\rangle$$

We now want to perturb the system by an electric field in the z-direction. This means to perturb the initial Hamilton operator H_0 by V = -eEz, such that the system is described by

$$H = H_0 - eEz$$

- a) Use the Wigner-Eckart theorem to state selection rules on the matrix elements $\langle n', \ell', m' | z | n, \ell, m \rangle$.
- b) Use parity to state further selection rules.
- c) Show that the first order correction to the energy of the perturbed system vanishes in the ground state.
- d) Consider now the first excited state, n = 2.
 - (i) Show that to first order in perturbation theory the two states $|2, 1, \pm 1\rangle$ remain unchanged and there is no correction to the energy.
 - (ii) Compute the matrix element $\langle 2, 0, 0 | z | 2, 1, 0 \rangle$. Use that these states can be represented by the wave functions

$$|2,0,0\rangle = \frac{1}{\sqrt{2\pi a}} \frac{1}{2a} \left(1 - \frac{r}{2a}\right) e^{-\frac{r}{2a}}, \quad |2,1,0\rangle = \frac{1}{\sqrt{2\pi a}} \frac{1}{4a^2} r e^{-\frac{r}{2a}} \cos\theta.$$

To evaluate the integrals, use

$$\int_0^\infty x^n e^{-x} = n! \,.$$

(iii) Now compute the first order corrections to the energy.

Problem 3: Tensor operators [15 points]

An irreducible spherical tensor operator $\mathbf{T}^{(l)}$ of rank l has spherical components $T_m^{(l)}$, which satisfy the following commutation relations with the generators J_z , J_{\pm} of the angular momentum algebra:

$$[J_z, T_m^{(l)}] = m\hbar T_m^{(l)}, \quad [J_{\pm}, T_m^{(l)}] = \hbar \sqrt{(l \mp m)(l \pm m + 1)} T_{m \pm 1}^{(l)}.$$

- a) Suppose you study the matrix elements of a spherical component $T_n^{(3)}$ of a tensor operator of rank 3 in the basis of states $|j, m\rangle$, where j labels the angular momentum and m the magnetic quantum number. Which matrix elements can be non-vanishing?
- b) Consider two commuting vector operators V and W with Cartesian components V_x, V_y, V_z and W_x, W_y, W_z . They satisfy the following commutation relations with the angular momentum operator:

$$[J_i, V_j] = i\hbar\epsilon_{ijk}V_k, \qquad i, j, k \in \{x, y, z\},\$$

and likewise for W. What are the spherical components of the two operators?

- c) Consider the set of operators V_iW_j , with $i, j \in \{x, y, z\}$. Which irreducible tensor operators can you form? Explain.
- d) In part b) you should have obtained that (among other operators) you can form a rank 2 tensor operator. Spell out its spherical components $T_2^{(2)}, T_1^{(2)}, T_0^{(2)}$ in terms of the spherical components V_m, W_m ($m = 0, \pm 1$).

Problem 4: Time dependent perturbation theory [18 points]

In the first part of this problem, you develop time-dependent perturbation theory. In the second part, you apply it to a specific example.

a) Consider a time-independent Hamilton operator H_0 with a time-dependent perturbation V(t):

$$H(t) = H_0 + \lambda V(t)$$

Here, the operator V(t) is constant in time, except that it is turned on at t = 0and turned off at some later time T. The constant λ is a dimensionless small parameter.

For t < 0 let the system be in the eigenstate $|m\rangle$ of H_0 . Let $|\tilde{\psi}_m(t)\rangle_I$ denote the state of the system and $\lambda \tilde{V}_I(x,t)$ the perturbation at time t in the interaction picture.

(i) Show that

$$i\hbar\partial_t |\tilde{\psi}_m(t)\rangle_I = \lambda \tilde{V}_I(x,t) |\tilde{\psi}_m(t)\rangle_I$$

- (ii) For $t \in [0,T]$, derive the expression for $|\tilde{\psi}_m(t)\rangle_I$ in terms of unperturbed states to first order in λ .
- (iii) We are interested in the transition probabilities $P_{m\to n}(t)$, t > T, between eigenstates $|m\rangle$ and $|n\rangle$ of H_0 under this perturbation. Compute $P_{m\to n}(t)$ for $m \neq n$ in first order perturbation theory. Result:

$$P_{m \to n}(t) = 4\lambda^2 |\langle n|V|m \rangle|^2 \frac{\sin^2[(E_m - E_n)T/2\hbar]}{(E_m - E_n)^2}$$

Problem 4: Time dependent perturbation theory [continued]

b) Consider now the example of an infinite square well in one dimension. For the unperturbed problem, the energy eigenvalues are

$$E_n = \frac{n^2 \pi^2 \hbar^2}{2ma^2}$$

for $n = 1, 2, \ldots$, and the eigenfunctions are

$$\psi_n = \sqrt{\frac{2}{a}} \sin \frac{n\pi x}{a}$$

At time t = 0 the system is perturbed such that the potential becomes

$$V(x) = \begin{cases} V_0, & 0 \le x \le \frac{a}{2} \\ 0, & \frac{a}{2} < x \le a \\ \infty, & \text{otherwise} \end{cases}$$

where $V_0 \ll E_1$. After time T, the perturbation is turned off.

- (i) Sketch the potential V as a function of x.
- (ii) The system is initially (t < 0) in the ground state. Find the probability that it is in the first excited state for t > T.

Problem 5: First Born approximation [9 points]

A beam of particles (mass m) is elastically scattered by a potential V given by

$$V = \begin{cases} V_0, & |x| \le L, |y| \le L, |z| \le L \\ 0, & \text{otherwise} \end{cases}$$

The incident particles propagate in z-direction with wave-vector $\vec{k} = k\vec{e_z}$. Compute the differential cross section $d\sigma/d\Omega$ as a function of the scattering angle θ and the corresponding azimuthal angle ϕ , in first Born approximation.

Problem 6: Second Quantisation [20 points]

Consider a system of bosonic particles in 1 dimension. Suppose the Hamilton operator is $\hat{H} = \sum_{k=0}^{\infty} E_k \hat{a}_k^{\dagger} \hat{a}_k$, where the operator \hat{a}_k^{\dagger} creates a single particle in a state of definite energy E_k , for $k \in \mathbb{N}_0$, and $[\hat{a}_k, \hat{a}_l^{\dagger}] = \delta_{kl}$. The single particle Hilbert space is the direct sum of the 1-dimensional eigenspaces associated to E_k .

- a) Compute the matrix element $\langle \Omega | \hat{a}_k \hat{a}_l \hat{a}_m^{\dagger} \hat{a}_n^{\dagger} | \Omega \rangle$, where $| \Omega \rangle$ is the vacuum state of the Fock space.
- b) The operator \hat{a}_k in the Heisenberg picture is denoted $\hat{a}_k(t)$. Starting from the Heisenberg equation of motion, show that $\hat{a}_k(t) = \exp(-\frac{iE_kt}{\hbar}) \hat{a}_k$.
- c) Write the single-particle operator \hat{x} in second-quantised form.
- d) Write the operator \hat{x} in terms of the field operator $\hat{\psi}(x)$.
- e) Let Z denote the sequence of complex numbers z_0, z_1, z_2, \ldots , such that $0 < \sum_{k=0}^{\infty} |z_k|^2 < \infty$. Consider the state

$$|Z\rangle = \mathcal{N}(Z) \prod_{k=1}^{\infty} e^{z_k \hat{a}_k^{\dagger}} |\Omega\rangle ,$$

where $\mathcal{N}(z)$ is a normalisation constant. Show that $|Z\rangle$ is an eigenstate for every $\hat{a}_k, k \in \mathbb{N}_0$. Compute the eigenvalues.

f) Show that the time-evolved expectation value of the field operator in the state $|Z\rangle$ solves the equation $i\hbar\partial_t f(x,t) = \hat{H}f(x,t)$, where \hat{H} here takes the appropriate form acting on single particle wave functions.