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Problem Set 11: Conductivity of disordered metals

The goal of this problem set is to show how methods of many-body theory can be used to
study non-interacting electrons in a random potential. In particular, we will compute the
disorder-averaged single-particle Green’s function as well as the conductivity using the Kubo
formula. We start by showing how we can make use of all the many-body theory tools, because
averaging over disorder generates an effective interaction between electrons.
Consider free electrons in a random potential V (x) described by the action

S[c̄, c] =

∫ β

0

dτ

∫
ddx c†(x, τ)

[
∂τ −

∇2

2m
+ V (x)

]
c(x, τ) (1)

with a Gaussian disorder distribution

p[V (x)] ∝ exp

[
−
∫
ddx

∫
ddy V (x)∆(x− y)V (y)

]
, (2)

i.e., 〈V (x)〉dis = 0 and 〈V (x)V (y)〉dis = D(x − y), with
∫
ddz∆(x − z)D(z − y) = δ(x − y).

Let’s consider the disorder-averaged partition function

〈Z〉dis =

∫
DV D(c̄, c) e−S[c̄,c] p[V (x)]. (3)

1) Perform the Gaussian integral over the disorder realizations V (x). Show that this
disorder average generates an effective two-body interaction between the electrons, with
an interaction potential given by the disorder correlation function D(x).

For this reason, it seems that we can straight-forwardly employ our many-body theory meth-
ods to compute disorder-averaged quantities. There is one caveat, though: when computing
disorder-averaged propagators, the partition function Z appears in the denominator, which
causes problems and requires to introduce a few more tricks. However, these go beyond the
scope of this problem set.
Let’s simplify further and take a Gaussian white noise model where the disorder potential
is uncorrelated at different positions, i.e., the disorder correlation function takes the form
D(x) = 1

2πν0τei
δ(x). Here, ν0 is the density of states at the Fermi energy and τei is the

characteristic electron–impurity scattering time.
The disorder-averaged Green’s function (GF) is given by

G−1 = G−1
0 − Σ, (4)

where G−1
0 = iωn−ξk is the bare (free) GF and Σ is the self-energy generated by the disorder.

We assume that the disorder is weak and we will calculate Σ in the leading approximation. We
start from the perturbative expansion of the GF, Fig. 1(a), and perform disorder averaging
by pairing V -vertices in a given order of the expansion in all possible ways. An example of
the leading diagram is shown in Fig. 1(b).
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Figure 1: (a) Perturbative expansion of the GF in the potential V before averaging over
disorder. (b) Leading contribution to the disorder-averaged GF. The dashed line with a cross
denotes the disorder correlation function 〈V (x)V (x′)〉dis.

Let us analyze the disorder-averaged GF.

2) Explain why there are no diagrams of order O(V 2k+1) in the disorder-averaged Green’s
function.

3) Draw all possible diagrams of order O(V 4); compare their structure with the diagram-
matic expansion of the GF in the electron interactions.
Hint: You have to look at the 2nd order in the interaction.

4) Single out the self-energy from the leading diagram, Fig. 1(b), write down the corre-
sponding analytical expression, calculate the integrals, do the analytic continuation, and
show that

ḠR/A(ω, k) ≡ 〈GR/A(ω, k)〉dis '
1

ω − ξk ± i/2τei

. (5)

5) Explain the physical meaning of Im(Σ) in Eq. (5).

6) Which series of diagrams is taken into account in Fig. 1(a).

Now we will use the disorder-averaged GFs to calculate the longitudinal conductivity using
the Kubo formula

σxx(ω) =
1

−iω

(
lim
q→0

χRjx,jx(q, ω) + e2n/m

)
, (6)

where χRjx,jx(q, ω) is the retarded current-current correlation function, and e, n,m appearing
in the diamagnetic term are the electron charge, density, and mass, respectively. To obtain
χR, we have to derive the current auto-correlation function on the imaginary frequency axis,

χjx,jx(q, iΩn) = − 1

V

∫ β

0

dτeiΩnτ 〈T̂τjx(q, τ)jx(−q, 0)〉, (7)

and do the analytic continuation iΩn → ω + i0+. For electrons with dispersion εk = k2/(2m)
the current operator in second quantization takes the form

j(q) =
e

2m

∑
k

(2k + q) c†kck+q. (8)

Let us at first find more convenient expressions before disorder averaging.

7) Insert Eq. (8) into Eq. (7) and use Wick’s theorem to express the current auto-correlation
function in terms of the GFs.
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8) Show that in the limit q→ 0 the disconnected part vanishes and χjx,jx , after summation
over the spin indices, can be written as

χjx,jx(q = 0, iΩn) = 2e2

∫ β

0

dτeiΩnτ

∫
d3k

(2π)3
v2
x(k)G(τ,k)G(−τ,k). (9)

Here, vx(k) = kx/m is the x-component of the electron velocity calculated at momentum
k.

9) Do the Fourier transform and rewrite Eq. (9) via a sum over the Matsubara frequency,
and draw the corresponding diagram.

10) Single out the part χRjx,jx(ω = 0), calculate it, and prove that it exactly cancels the
diamagnetic term in Eq. (6).
Hints: (a) Regularize the expression by introducing eiωn0+ (cf. the derivation of the
density by using the Green’s functions);
(b) prove the (Ward) identity vxG

2(k) = ∇kG(k);
(c) use it, integrate once by parts, and single out the electron density.

11) Advanced: Which physical symmetry prohibits the existence of the diamagnetic term in
the equation for the conductivity of normal metals?

Now we can average χjx,jx(q, iΩn) over the disorder. The classical part of this response
function is given by the so-called Drude–Boltzmann approximation.

12) Consider the difference χjx,jx(iΩn)−χjx,jx(0) and substitute the disorder averaged GFs
for the GFs of the free electrons. Analyze this expression and check the convergence of
all integrals. Convince yourself that it is determined by pole contributions.

13) Calculate the Matsubara sum by converting it to a contour integral and keeping only
those terms which yield finite pole contributions.
Hint: We consider a good metal where pF and EF are very large and T, ω � EF ; this
allows one to simplify the integrals in a small vicinity of the Fermi surface.

14) Change variables ∫
d3k

(2π)3
→
∫
dΩ

4π

∫
ν(ξ)dξ

2π
,

and simplify the expression for the Drude conductivity, using the fact that the dominant
contribution comes from the vicinity of the Fermi surface.

15) Calculate the angular integral and the integral over the energy ξ and show that this
yields the classical Drude conductivity

σxx(ω) ' e2nτei

m

1

1− iωτei

. (10)

16) Advanced: Which important diagrams are not included in the Drude–Boltzmann ap-
proximation? These diagrams describe quantum corrections to the classical conductivity
(e.g. the weak-localization correction).

Discussion of the problem set on Jan. 21, 2020.
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