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Problem Set 9: Stoner transition

Let us discuss the phase transition of normal metals from a para- to a ferromagnetic state.
We assume that the itinerant electrons screen the Coloumb potential so that the interaction
is exponentially suppressed beyond a distance of a lattice constant. Thus, we start restrict
our investigation of metallic magnetism to the following Hamiltonian, with only the on-site
repulsive part of the Coulomb interaction, that reads

H = −t
∑
〈i,j〉,σ

c†i,σcj,σ + U
∑
i

ni,↑ni,↓. (1)

Exercise 1. Mean-field theory

(a) Show that

Hint = U
∑
i

ni,↑ni,↓ = −2U

3

∑
i

S2
i +

U

2

∑
i

ni, (2)

where we use the electronic spin operator Si = 1
2
c†i,σσσ,σ′ci,σ′ .

(b) Expand the Hamiltonian around the mean-field value of the spin operator via δSi =
Si−〈Si〉, where the mean-field value describes the magnetic ordering in the system with
Mi = −4U

3
〈Si〉.

(c) Consider a ferromagnetic state, Mk = M0 δk,0, with the spin polarization along the
z axis, M0 = M0 ez. Show that the mean-field Hamiltonian including the chemical
potential reads (V = Nd)

HMF =
3

8U
V |M0|2 +

∑
k

(
εk + 1

2
M0 + µ

)
c†k,↑ck,↑ +

(
εk − 1

2
M0 + µ

)
c†k,↓ck↓. (3)

Now, we calculate the ground-state energy E0(M0, µ, ε↑, ε↓) at zero temperature, where the
spin-up (spin-down) states are filled up to the energies ε↑ (ε↓).

(d) Rewrite the energy density E0/V using the one-particle density of states (DOS) ρ(ε).

(e) Extremize the energy density with respect to the set of parameters (M0, µ, ε↑, ε↓) for fixed
density. We can conclude from this set of equations that the polarization is M0 = ε↓− ε↑
(for ρ(ε↑,↓) 6= 0) and the chemical potential equals µ = −1

2
(ε↓ + ε↑). Argue that there is

a finite magnetization above a critical value U > Uc, and express Uc through the DOS,
ρ(ε).
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Exercise 2. Hubbard–Stratonovich approach

Let us now explicitly use a Hubbard–Stratonovich decoupling and expand the action around
its classical solution. We will consider the leading-order fluctuations, neglecting the effect of
any spatial and temporal dependence of the fluctuations, and try to detect a phase transition
into a magnetically ordered state.

(a) We focus on the spin channel described by Hint ≈ −U
∑

i(S
z
i )2. Write down the field

integral representation of this Hamiltonian and decouple the quartic term by introducing
a bosonic field mi(τ). After integrating out the fermionic states, show that the system
has the following partition sum

Z = Z0

∫
D[m]e−S[m],

S[m] = 1
4
U

∫ β

0

dτ
[∑

p

|mp|2
]
− Tr

[
ln
(
1− 1

2
Uσzm̂Ĝ0

)]
, (4)

with matrices m̂ and Ĝ0 in spin-momentum space. Here, Z0 is the partition function of
the non-interacting electron gas.

(b) Find the solution of the saddle-point equation for S[m]. We assume that the solution is
homogeneous and not polarized. Expand the action up to leading order (fourth order)
in the fluctuations around its classical solution. Verify that the odd terms in the field
mi(τ) vanish by the symmetry under the transformation m→ −m.

(c) Show that contributions from the quadratic and quartic part of the expansion can be
collected in an effective action for the bosonic field that reads

Seff[m] =
1

2

∑
q

v2(q)|mq|2 +
1

4Nβ

∑
qi

v4({qi})
4∏
i=1

mqiδ
∑

i qi,0
, (5)

where v2(q) = U
2

(1− UΠq) with the polarization function Πq = − 1
βN

∑
kG0,kG0,k+q.

Remark: No explicit computation of the traces, respectively of v2/4(q), is needed.

(d) Let us consider the frequency- and momentum-independent contribution, Πq → ν0 and
v4({qi})→ u = v4(0)βN , and also neglect any spatial/temporal dependence of the ma-
gnetic field. Then, the action exhibits a phase transition at a critical point Uc. Determine
Uc in this simplified case.

Remark: The polarization function Πq can be approximated at small frequencies |ωn|/|qvf |
as follows: Πq ≈ Π0,q − ν0

|ωn|
v|q| with v = c vf (c depends on the dimension). The static

susceptibility Π0,q at small q reads Π0,q ≈ ν0[1− ξ2q2 + ...], where ξ ∼ 1/kf .

Discussion of the problem set on Jan. 7, 2020.
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