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Problem Set 8: Bosonization

In one dimensional systems, there is an exact way of transforming a fermionic theory into a
bosonic one: bosonization. In this problem set, we go through a step by step derivation of the
bosonized theory. The derivation is based on the reference Annalen Phys. 7 (1998) by J. von
Delft and H. Schoeller. We will use the following assumptions:

• The system is one-dimensional. We consider the Hamiltonian of the Tomonaga–Luttinger
model (~vF = 1, : · · · : is defined in Ex. 1),

H0 = 2π
L

∑
kη

(
mk − 1

2

)
: c†kηckη : . (1)

• The theory can be formulated in terms of fermionic creation and annihilation operators,
c†kη and ckη, which satisfy {ckη, c

†
k′η′} = δkk′δηη′ , where η labels different species, e.g.

spins or left/right-movers.

• The momentum k is quantized such that k = 2π
L

(
mk − 1

2

)
with mk ∈ Z, and L a length

(system size). Note that k is unbounded.

Exercise 1. Groundwork in terms of fermions

(a) Introduce a field ψη via the Fourier transform

ψη(x) =
√

2π
L

∑
k

e−ikxckη. (2)

Show that this field satisfies the canonical anticommutation relations (for fields with
periodicity L)

{ψη(x), ψ†η′(x
′)} = δηη′ 2π

∑
n∈Z

δ(x− x′ − nL) eiπn, (3)

{ψη(x), ψη′(x
′)} = 0 = {ψ†η(x), ψ†η′(x

′)}. (4)

(b) Bosonization can be understood as an operator identity on Fock space. To show this,
let us look at the structure of the Fock space of the fermions ckη. We therefore define
the vacuum (or Fermi sea) |0〉0 as usual via

ck|0〉0 = 0 for k > 0, c†k|0〉0 = 0 for k < 0. (5)

To deal with the infinite number of states below the Fermi surface (and their resulting
infinite energy), we introduce normal-ordering : · · · : with respect to this vacuum, defined
as moving all operators annihilating the vacuum to the right. It can be rewritten as
: ABC · · · : = ABC · · · − 0〈0|ABC . . . |0〉0.
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We further introduce the particle number operator as

Nη =
∑
k

: c†kηckη : . (6)

We will show that, for each Nη, fluctuations inside of the corresponding space are des-
cribed by adding electron-hole pairs, which can be described by a bosonic field.

Show that the bosonic operators

b†qη = i√
mq

∑
k

c†k+qηckη, bqη = −i√
mq

∑
k

c†k−qηckη, (7)

with q = 2π
L
mq > 0, mq ∈ N, obey a bosonic algebra. Be careful when subtracting two

terms with infinite contributions from k < 0.

(c) Let’s now focus on the vacuum of the b operators. Denote by | ~N〉0 the state with eigen-

values ~N = (N1, . . . Nη, . . . ), which does not contain any electron-hole pairs. Visualize

this state and the action of b
(†)
qη for one species η, and convince yourself that

bqη| ~N〉0 = 0, (8)

for all q and η. For the following, note that the normal ordering prescription of the
bosons is basically determined by the normal ordering prescription of the fermions.

Exercise 2. Completeness of the bosonic representation

Let us check that we do not any lose information when going from the fermions to the bosons.
For simplicity, you may restrict yourself to only one species η in this exercise. The Fock
space Fc = ⊕NHN , which is the direct sum of Hilbert spaces with fixed particle number N , is
spanned by arbitrary combinations of the fermion operators c

(†)
k acting on the vacuum state

|N〉0. We will show that it is identical to the Fock space Fb, spanned by arbitrary combinations

of the bosonic operators b
(†)
q acting on the set of all N -particle states {|N〉0, N ∈ Z}.

(a) Show that Fb ⊆ Fc.

(b) To further prove Fb = Fc, we compare the grand-canonical partition functions of both
spaces. These are sums over positive definite quantities. If there is some state inside Fc
which is not inside of Fb, then the partition functions must disagree. So, as a first step,
compute the grand-canonical partition function for Fc.

(c) We now derive a bosonic representation of the HamiltonianH0. Show that 0〈 ~N |H0| ~N〉0 =
π
L
N2 and [H0, b

†
q] = qb†q. Then, the Hamiltonian is given by

H0 =
∑
q>0

q b†qbq + π
L
N2. (9)

(d) Find an expression for the grand-canonical partition function Fb.

Hint: Fb is spanned by states of the form |N ; {nq}〉 =
∏

q>0
b
†nq
q

(nq !)1/2
|N〉0.
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(e) Show that the partition functions in the fermionic and bosonic representation are equal.

Hint: Use the following two identities

∞∑
n=−∞

yn
2

x2n =
∞∏
m=1

(1− y2m)(1 + y2m−1x2)(1 + y2m−1x−2), (10)

∞∑
M=0

P (M)yM =
∞∏
n=1

1

1− yn
, (11)

where x 6= 0 and |y| < 1. P (M) describes the number of partitions of M .

Exercise 3. Bosonization

To prove the bosonization identity, we need some additional ingredients:

• The bosonic operators b
(†)
qη act within Hilbert spaces of fixed particle number. To mediate

between those, we introduce the so-called Klein factors, which transform | ~N〉 to | ~N ′〉,
changing the particle number, as follows

Fη =
∑
~N

∑
nq

|N1, . . . , Nη − 1, . . . , NM ; {nq}〉〈N1, . . . , Nη, . . . , NM ; {nq}| T̂η, (12)

where T̂η = (−1)
∑η−1
µ=1 N̂µ counts the phase. It is easy to check that these operators satisfy

F †ηFη = FηF
†
η = 1 and are fermionic.

• We introduce a bosonic field via

ϕη(x) = −
∑
q>0

1
√
mq

e−iq(x−ia/2)bqη (13)

(and its hermitian conjugate), where a is a positive regularizer (the lattice constant).

(a) Show that : ψ†η(x)ψη(x) : = ∂x
(
ϕη(x) + ϕ†η(x)

)
+ 2π

L
N̂η.

This demonstrates a deep relation between the electron density and the bosonic fields.

(b) Show that the field ψη(x) generates coherent states ψη(x)| ~N〉0, i.e., eigenstates of bqη.
Thus, it can be represented as

ψη(x) | ~N〉0 = e
∑
q>0 αq(x)b

†
qη Fη λ̂η(x) | ~N〉0, (14)

where λ̂η(x) is a phase operator. Determine αq(x) and λ̂η(x).

(c) This scheme can be generalized to an arbitrary state | ~N〉 with multiple particle-hole
excitations,

| ~N〉 = f({b†qη})| ~N〉0, (15)

where f is a well-behaved function. Using the following two identites

ψη(x)f({b†qη′}) = f({b†qη′ − δηη′α
∗
q(x)})ψη(x), (16)

f({b†qη′ − δηη′α
∗
q(x)}) = e−iϕη(x)f({b†qη′})e

iϕη(x), (17)

and that the Klein factors commute with the bosonic operators b
(†)
qη , to verify from former

results on this problem set the so-called bosonization identity

ψη(x) | ~N〉 = Fη λ̂η(x)e−iϕ
†
η(x)e−iϕη(x) | ~N〉. (18)
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Exercise 4. Fermion and boson Green’s functions

We consider the Tomonaga–Luttinger Hamiltonian (1) and determine the imaginary-time
Green’s function in the bosonic and fermionic representation.

(a) First, calculate the imaginary-time fermionic Green’s function in the limit L → ∞ for
T 6= 0 (defined only for τ 6= 0):

−Gηη′(τ, x) = 〈T ψη(τ, x)ψ†η′(0, 0)〉 = Θ(τ)G>
ηη′(τ, x) + Θ(−τ)G<

ηη′(τ, x), (19)

where

−G>
ηη′(τ, x) = 〈ψη(τ, x)ψ†η′(0, 0)〉,

G<
ηη′(τ, x) = 〈ψ†η′(0, 0)ψη(τ, x)〉.

Hint: After Fourier transformation and taking the limit L → ∞, perform a contour
integral and close the semicircle in the lower (upper) half plane of the complex plane
for x > 0 (x < 0). It is necessary to introduce a regularizer a by including explicitly the
factor e−k sgn (τ)a to ensure convergence of the integral in the limit τ → 0.

(b) Verify that the fermionic correlator shows an algebraic decay in the zero-temperature
limit:

Gηη′(τ, x) −−−→
T→0

− δηη′

τ + ix+ sgn (τ)a
. (20)

(c) It can be shown that the fermionic and bosonic Green’s functions, for a Hamiltonian
quadratic in the bosonic representation [cf. Eq. (9)], are related by

Gηη′(τ, x) −−−→
T→0

−δηη′a−1 sgn (τ)e〈T φη(τ,x)φη(0,0)−φη(0,0)φη(0,0)〉, (21)

where

φη(x) = ϕ†η(x) + ϕη(x) = −
∑
q>0

1
√
mq

(
e−iqxbqη + eiqxb†qη

)
e−qa/2.

Determine the bosonic imaginary-time Green’s function

−Gηη′(τ, x) = 〈T φη(τ, x)φη′(0, 0)〉 = Θ(τ)G>ηη′(τ, x) + Θ(−τ)G<ηη′(τ, x), (22)

where

−G>ηη′(τ, x) = 〈φη(τ, x)φη′(0, 0)〉,
−G<ηη′(τ, x) = 〈φη′(0, 0)φη(τ, x)〉,

for L 6=∞ and T = 0.

(d) Finally, show that the result for the bosonic Green’s function (22), when substituted
into Eq. (21), is in agreement with the result for the fermionic Green’s function (20).

Discussion of the problem set on Dec. 10 and Dec. 17, 2019.
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