Problem Set 5: Driven harmonic oscillator and basic formulae in the Keldysh formalism

Exercise 1. Driven harmonic oscillator
In the lecture, we derived the fundamental relation between expectation values of operators and fields,

$$
\begin{equation*}
\left\langle T_{c}\left[a^{i}(t) a^{\dagger j}\left(t^{\prime}\right)\right]\right\rangle=\left\langle\phi^{i}(t) \bar{\phi}^{j}\left(t^{\prime}\right)\right\rangle \tag{1}
\end{equation*}
$$

where T_{c} denotes contour time ordering and $i, j \in\{ \pm\}$ are contour indices.
(a) Use Eq. (1) to establish the relation between operator and field representation of the retarded and Keldysh Green's functions:

$$
\begin{align*}
G^{R}\left(t, t^{\prime}\right) & =-i \theta\left(t-t^{\prime}\right)\left\langle\left[a(t), a^{\dagger}\left(t^{\prime}\right)\right]\right\rangle \tag{2}\\
G^{K}\left(t, t^{\prime}\right) & =-i\left\langle\left\{\phi_{c}(t) \bar{\phi}_{q}\left(t^{\prime}\right)\right\rangle,\right. \tag{3}\\
& =-i\left\langle\phi_{c}(t) \bar{\phi}_{c}\left(t^{\prime}\right)\right\rangle
\end{align*}
$$

What is the corresponding relation for $G^{A}\left(t, t^{\prime}\right)$?
Consider now a many-body system of a single bosonic state:

$$
\begin{equation*}
H_{0}=\omega_{0} a^{\dagger} a \quad \Rightarrow \quad S[\bar{\phi}, \phi]=\int_{C} \mathrm{~d} t \bar{\phi}\left[i \partial_{t}-\omega_{0}\right] \phi \tag{4}
\end{equation*}
$$

The connection from model (4) to the quantum harmonic oscillator can be made via the transformation

$$
\begin{equation*}
\phi=\frac{1}{\sqrt{2 \omega_{0}}}\left(\omega_{0} X+i P\right), \quad \bar{\phi}=\frac{1}{\sqrt{2 \omega_{0}}}\left(\omega_{0} X-i P\right) \tag{5}
\end{equation*}
$$

where X and P are real fields.
(b) Starting from the action (4), show that the corresponding action for the real X and P fields is given by (boundary terms are neglected in the continuous form)

$$
\begin{equation*}
S[X, P]=\int_{C} \mathrm{~d} t\left[P \dot{X}-\frac{1}{2} P^{2}-\frac{\omega_{0}^{2}}{2} X^{2}\right] \tag{6}
\end{equation*}
$$

which is the Hamiltonian representation of the path integral for the harmonic oscillator.
(c) Integrate out the P-fields to obtain the Lagrangian representation. Show that after transforming to Keldysh space via

$$
\begin{equation*}
X^{c}=\frac{X^{+}+X^{-}}{\sqrt{2}}, \quad X^{q}=\frac{X^{+}-X^{-}}{\sqrt{2}} \tag{7}
\end{equation*}
$$

one obtains the action

$$
\begin{equation*}
S\left[X^{c}, X^{q}\right]=\int_{-\infty}^{\infty} \mathrm{d} t\left[-X^{q} \ddot{X}^{c}-\omega_{0}^{2} X^{c} X^{q}\right] . \tag{8}
\end{equation*}
$$

(d) Integrate out X^{q} and show that, for the harmonic oscillator, X^{c} obeys classical mechanics: $\ddot{X}^{c}=-\omega_{0}^{2} X^{c}$.
Remark: For general systems, the validity of this relation is controlled by the strength of the fluctuations in X^{q}. This is the origin of the terms "classical" and "quantum" component for X^{c} and X^{q}, respectively.
(e) Let's now add a term $-\frac{\omega_{1}^{2}}{2}(X-y(t))^{2}$ to the action (6). Here $y(t)$ is a given external function of time (vanishing at $\pm \infty$). How can such a term arise physically? Show that the corresponding action for the $\phi, \bar{\phi}$ fields is given by

$$
\begin{equation*}
S[\bar{\phi}, \phi]=\int_{C} \mathrm{~d} t\left[\bar{\phi}\left(i \partial_{t}-\omega_{2}\right) \phi+\frac{V(t)}{\sqrt{2}}(\bar{\phi}+\phi)\right] \tag{9}
\end{equation*}
$$

where $\omega_{2}=\sqrt{\omega_{0}^{2}+\omega_{1}^{2}}$, and determine the function $V(t)$.
(f) Assume now that $V(t)$ has different contributions on the forward and backward branch. Transform Eq. (9) into Keldysh space (convention: $\left.V^{c / q}=\left(V^{+} \pm V^{-}\right) / 2\right)$ and compute $Z\left[V^{c}, V^{q}\right]=\int \mathcal{D}[\bar{\phi}, \phi] e^{-\left(S+S_{V}\right)}$. Check that $Z\left[V^{c}, 0\right]=1$.
(g) Compute the expectation value $\langle X(t)\rangle$ and show (using the explicit form of the bare Green's functions) that it is essentially given by the real part of the Fourier transform of $V_{c}(t)$.
Hint: Use the generating functional via $\delta Z\left[V_{c}, V_{q}\right] / \delta V_{q}(t)$.

Exercise 2. Basic formulae from the lecture
In this exercise, we prove three basic formulae used in the lecture.
(a) The discrete correlation functions of a single bosonic mode with energy ω_{0} at inverse temperature β are given by

$$
\begin{aligned}
& \left\langle\phi_{j}^{+} \bar{\phi}_{j^{\prime}}^{-}\right\rangle \equiv i G_{j j^{\prime}}^{<}=\frac{\rho h_{+}^{j^{\prime}-1} h_{-}^{j-1}}{\operatorname{det}\left[-i \hat{G}^{-1}\right]}, \\
& \left\langle\phi_{j}^{-} \bar{\phi}_{j^{\prime}}^{+}\right\rangle \equiv i G_{j j^{\prime}}^{>}=\frac{h_{+}^{N-j} h_{-}^{N-j^{\prime}}}{\operatorname{det}\left[-i \hat{G}^{-1}\right]}=\frac{\left(h_{+} h_{-}\right)^{N-1} h_{+}^{1-j} h_{-}^{1-j^{\prime}}}{\operatorname{det}\left[-i \hat{G}^{-1}\right]}, \\
& \left\langle\phi_{j}^{+} \bar{\phi}_{j^{\prime}}^{+}\right\rangle \equiv i G_{j j^{\prime}}^{\mathbb{T}}=\frac{h_{-}^{j-j^{\prime}}}{\operatorname{det}\left[-i \hat{G}^{-1}\right]} \times \begin{cases}1, & j \geq j^{\prime} \\
\rho\left(h_{+} h_{-}\right)^{N-1}, & j<j^{\prime}\end{cases} \\
& \left\langle\phi_{j}^{-} \bar{\phi}_{j^{\prime}}^{-}\right\rangle \equiv i G_{j j^{\prime}}^{\tilde{\pi}}=\frac{h_{+}^{j^{\prime}-j}}{\operatorname{det}\left[-i \hat{G}^{-1}\right]} \times\left\{\begin{array}{ll}
\rho\left(h_{+} h_{-}\right)^{N-1}, & j>j^{\prime} \\
1, & j \leq j^{\prime}
\end{array},\right.
\end{aligned}
$$

with

$$
\rho=e^{-\beta \omega_{0}}, \quad h_{ \pm}=1 \pm i \omega_{0} \delta t, \quad \operatorname{det}\left[-i \hat{G}^{-1}\right]=1-\rho\left(h_{-} h_{+}\right)^{N-1} .
$$

Show that, in the continuum limit $N \rightarrow \infty, \delta t \sim 1 / N$, the correlation functions are given by

$$
\begin{aligned}
\left\langle\phi^{+}(t) \bar{\phi}^{-}\left(t^{\prime}\right)\right\rangle & =i G^{<}\left(t, t^{\prime}\right)=n_{\mathrm{B}} e^{-i \omega_{0}\left(t-t^{\prime}\right)}, \\
\left\langle\phi^{-}(t) \bar{\phi}^{+}\left(t^{\prime}\right)\right\rangle & =i G^{>}\left(t, t^{\prime}\right)=\left(n_{\mathrm{B}}+1\right) e^{-i \omega_{0}\left(t-t^{\prime}\right)}, \\
\left\langle\phi^{+}(t) \bar{\phi}^{+}\left(t^{\prime}\right)\right\rangle & =i G^{\mathbb{T}}\left(t, t^{\prime}\right)=\Theta\left(t-t^{\prime}\right) i G^{>}\left(t, t^{\prime}\right)+\Theta\left(t^{\prime}-t\right) i G^{<}\left(t, t^{\prime}\right), \\
\left\langle\phi^{-}(t) \bar{\phi}^{-}\left(t^{\prime}\right)\right\rangle & =i G^{\tilde{\mathrm{T}}}\left(t, t^{\prime}\right)=\Theta\left(t^{\prime}-t\right) i G^{>}\left(t, t^{\prime}\right)+\Theta\left(t-t^{\prime}\right) i G^{<}\left(t, t^{\prime}\right),
\end{aligned}
$$

where $n_{\mathrm{B}}=\frac{\rho}{1-\rho}$.
(b) Using the discrete correlation functions, show that

$$
G^{\mathbb{T}}\left(t, t^{\prime}\right)+G^{\tilde{\mathbb{T}}}\left(t, t^{\prime}\right)-G^{>}\left(t, t^{\prime}\right)-G^{<}\left(t, t^{\prime}\right)= \begin{cases}0, & t \neq t^{\prime} \\ 1, & t=t^{\prime}\end{cases}
$$

(c) The partition function for noninteracting fermions and the polarization matrix are given by $(\alpha, \beta \in\{c, q\})$

$$
\begin{aligned}
Z[V] & =e^{\operatorname{Tr} \ln \left[\hat{1}-\hat{G} V^{\alpha} \hat{\gamma}^{\alpha}\right]}, \quad \hat{\gamma}^{c}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right), \quad \hat{\gamma}^{q}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \\
\hat{\Pi}^{\alpha \beta}\left(x, x^{\prime}\right) & \equiv-\left.\frac{i}{2} \frac{\delta^{2} \ln Z[\hat{V}]}{\delta V^{\beta}\left(x^{\prime}\right) \delta V^{\alpha}(x)}\right|_{\hat{V}=0}, \quad x=(\mathbf{r}, t) .
\end{aligned}
$$

Use these equations to show that

$$
\hat{\Pi}^{\alpha \beta}\left(x, x^{\prime}\right)=\frac{i}{2} \operatorname{Tr}\left\{\hat{\gamma}^{\alpha} \hat{G}\left(x, x^{\prime}\right) \hat{\gamma}^{\beta} \hat{G}\left(x^{\prime}, x\right)\right\} .
$$

