Problem Set 4: Particle in a dissipative environment and Grassmann calculus

Exercise 1. Particle in a dissipative environment
We consider the influence of a non-interacting bosonic bath on a single particle in a potential V. The full action reads

$$
\begin{equation*}
S=S_{\text {bath }}+S_{\text {particle }}+S_{\text {coupling }}, \tag{1}
\end{equation*}
$$

where the terms

$$
\begin{equation*}
S_{\mathrm{bath}}=\int \mathrm{d} t \sum_{\alpha} \frac{m_{\alpha}}{2}\left(\dot{q}_{\alpha}^{2}-\omega_{\alpha}^{2} q_{\alpha}^{2}\right), \quad S_{\text {particle }}=\int \mathrm{d} t\left(\frac{m}{2} \dot{q}^{2}-V(q)\right), \tag{2}
\end{equation*}
$$

describe the bath and the particle, respectively. Here, q is the degree of freedom of the particle, and q_{α} are the degrees of freedom of the bath. We assume that the bath has a temperature T, and the coupling is linear in q_{α} :

$$
\begin{equation*}
S_{\text {coupling }}=-\int \mathrm{d} t \sum_{\alpha}\left(c_{\alpha} q_{\alpha} q+\frac{\left(c_{\alpha} q\right)^{2}}{2 m_{\alpha} \omega_{\alpha}^{2}}\right) \tag{3}
\end{equation*}
$$

Here, c_{α} describes the strength of the interaction between a mode α and the particle. Note that: (i) The second term of order $O\left(q^{2}\right)$ was added to $S_{\text {coupling }}$ for convenience, in order to eliminate an effective change of $V(q)$ caused by the bath. (ii) We consider the quantum mechanics of a single particle; therefore, second quantization is not needed (but do not forget that the bath is bosonic).
(a) Give an expression for the partition function Z by using the Eucleadean action [i.e., by using imaginary time $\tau \in(0, \beta)]$.
(b) Integrate out the bath, i.e., perform the Gaussian integrals over the degrees of freedom of the bath q_{α}. You should find the effective action

$$
\begin{equation*}
S_{\mathrm{eff}}=S_{\text {particle }}+\frac{1}{2 T} \sum_{\omega_{n}, \alpha} \frac{\omega_{n}^{2} c_{\alpha}^{2} q\left(\omega_{n}\right) q\left(-\omega_{n}\right)}{m_{\alpha} \omega_{\alpha}^{2}\left(\omega_{\alpha}^{2}+\omega_{n}^{2}\right)} \tag{4}
\end{equation*}
$$

Is ω_{n} in this expression fermionic or bosonic?
(c) Rewrite the influence of the bath as $-T \int_{0}^{\beta} \mathrm{d} \tau \mathrm{d} \tau^{\prime} q(\tau) K\left(\tau-\tau^{\prime}\right) q\left(\tau^{\prime}\right)$ and determine K from the above expression for $S_{\text {eff }}$.
(d) Show that, in the case of Ohmic dissipation with $K\left(\omega_{n}\right)=\frac{\eta}{2}\left|\omega_{n}\right|$ and for $\tau \ll T^{-1}$, we obtain

$$
\begin{equation*}
K(\tau) \simeq \frac{\eta}{2 \pi T \tau^{2}} . \tag{5}
\end{equation*}
$$

(e) Let us now specify the shape of the potential and consider

$$
V(q)= \begin{cases}m \omega_{c}^{2} q^{2} / 2, & 0<|q|<a, \\ -\infty, & \mid q>a,\end{cases}
$$

with Ohmic dissipation in the above limit. Compute the action of the bounce solution, i.e., a non-trivial solution of the equations of motion of the inverted potential. How do the parameters η and T influence the action of the bounce? What does this mean physically?

Exercise 2. Grassmann calculus

Let $\eta_{i}, \bar{\eta}_{i}, \xi_{i}, \bar{\xi}_{i}$ be Grassmann numbers, and A a complex matrix. Summation conventions are used in this exercise.

1. Show that under a change of coordinates $\eta_{i}=A_{i j} \xi_{j}$ one obtains

$$
\begin{equation*}
\int d \eta_{N} \ldots d \eta_{1} f\left(\eta_{1}, \ldots, \eta_{N}\right)=\int d \xi_{N} \ldots d \xi_{1} f\left(A_{1 j} \xi_{j}, \ldots, A_{N j} \xi_{j}\right)(\operatorname{det} A)^{-1} \tag{6}
\end{equation*}
$$

2. Show the following identities:

$$
\begin{align*}
\int\left(\prod_{i=1}^{N} d \bar{\eta}_{i} d \eta_{i}\right) \exp \left(-\bar{\eta}_{i} A_{i j} \eta_{j}\right) & =\operatorname{det} A \tag{7}\\
\int\left(\prod_{i=1}^{N} d \bar{\eta}_{i} d \eta_{i}\right) \exp \left(-\bar{\eta}_{i} A_{i j} \eta_{j}+\bar{\xi}_{i} \eta_{i}+\bar{\eta}_{i} \xi_{i}\right) & =\operatorname{det} A \cdot \exp \left(\bar{\xi}_{i}\left(A^{-1}\right)_{i j} \xi_{j}\right) \tag{8}\\
\int\left(\prod_{i=1}^{N} d \bar{\eta}_{i} d \eta_{i}\right) \eta_{n} \bar{\eta}_{m} \exp \left(-\bar{\eta}_{i} A_{i j} \eta_{j}\right) & =\operatorname{det} A\left(A^{-1}\right)_{n m} \tag{9}
\end{align*}
$$

To show (8) and (9), assume that A is Hermitian. Generalization of the last result leads to Wick's theorem for fermions.

