Problem Set 3: Kubo formula, free energy of Fermi gas

Exercise 1. Kubo formula: Conductivity in a weak external electromagnetic field
We consider N particles in an external electromagnetic field (ϕ, \mathbf{A}) described by the Hamiltonian

$$
\begin{equation*}
H=\sum_{i=1}^{N}\left[\frac{1}{2 m}\left(\hat{\mathbf{p}}_{i}-\frac{e}{c} \mathbf{A}\left(\hat{\mathbf{x}}_{i}, t\right)\right)^{2}+e \phi\left(\hat{\mathbf{x}}_{i}, t\right)\right] \tag{1}
\end{equation*}
$$

where we use the notation $\hat{\mathbf{O}}=\left(\hat{O}_{x}, \hat{O}_{y}, \hat{O}_{z}\right)^{T}$.
(a) Consider the following first-quantized operators,

$$
\begin{align*}
\hat{n}(\mathbf{x}) & =\sum_{i=1}^{N} \delta\left(\mathbf{x}-\hat{\mathbf{x}}_{i}\right), \tag{2}\\
\hat{\mathbf{j}}(\mathbf{x}) & =\frac{e}{2 m} \sum_{i=1}^{N}\left[\hat{\mathbf{p}}_{i} \delta\left(\mathbf{x}-\hat{\mathbf{x}}_{i}\right)+\delta\left(\mathbf{x}-\hat{\mathbf{x}}_{i}\right) \hat{\mathbf{p}}_{i}\right] \tag{3}\\
\hat{\mathbf{j}}_{A}(\mathbf{x}) & =\frac{e}{2 m} \sum_{i=1}^{N}\left[\left(\hat{\mathbf{p}}_{i}-\frac{e}{c} \mathbf{A}\left(\hat{\mathbf{x}}_{i}, t\right)\right) \delta\left(\mathbf{x}-\hat{\mathbf{x}}_{i}\right)+\delta\left(\mathbf{x}-\hat{\mathbf{x}}_{i}\right)\left(\hat{\mathbf{p}}_{i}-\frac{e}{c} \mathbf{A}\left(\hat{\mathbf{x}}_{i}, t\right)\right)\right] \tag{4}
\end{align*}
$$

where $\hat{\mathbf{p}}_{i}=-i \nabla_{\mathbf{x}_{i}}$, and the current $\hat{\mathbf{j}}_{A}(\mathbf{x})$ is composed of a paramagnetic and diamagnetic contribution, $\hat{\mathbf{j}}_{A}(\mathbf{x})=\hat{\mathbf{j}}(\mathbf{x})-\frac{e^{2}}{m c} \hat{n}(\mathbf{x}) \mathbf{A}$. The latter is responsible for the diamagnetic effect occuring in the presence of an external magnetic field in diamagnetic materials. In paramagnetic materials the former contribution dominates the current.
Rewrite H such that the parts linear in the external fields couple to $\hat{\mathbf{j}}_{A}(\mathbf{x})$ and $\hat{n}(\mathbf{x})$.
(b) Show that the linear response of $\left\langle\hat{\mathbf{j}}_{A}(\mathbf{x}, t)\right\rangle$ to an external electromagnetic perturbation (ϕ, \mathbf{A}) is given by

$$
\begin{align*}
\left\langle\hat{j}_{A, \mu}(\mathbf{x}, t)\right\rangle & =\int \mathrm{d}^{3} x^{\prime} \mathrm{d} t^{\prime}\left[-\frac{1}{c} \chi_{j_{\mu}, j_{\nu}}\left(\mathbf{x}-\mathbf{x}^{\prime}, t-t^{\prime}\right) A_{\nu}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right. \\
& \left.+e \chi_{j_{\mu}, n}\left(\mathbf{x}-\mathbf{x}^{\prime}, t-t^{\prime}\right) \phi\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right]-\frac{e^{2} n}{m c} A_{\mu}(\mathbf{x}, t) \tag{5}
\end{align*}
$$

with the retarded susceptibilities

$$
\begin{align*}
\chi_{j_{\mu}, j_{\nu}}\left(\mathbf{x}-\mathbf{x}^{\prime}, t-t^{\prime}\right) & =-i \Theta\left(t-t^{\prime}\right)\left\langle\left[\hat{j_{\mu}} H_{0}(\mathbf{x}, t), \hat{j}_{\nu}^{H_{0}}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right]\right\rangle, \tag{6}\\
\chi_{j_{\mu}, n}\left(\mathbf{x}-\mathbf{x}^{\prime}, t-t^{\prime}\right) & =-i \Theta\left(t-t^{\prime}\right)\left\langle\left[\hat{j_{\mu}} H_{0}(\mathbf{x}, t), \hat{n}^{H_{0}}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right]\right\rangle . \tag{7}
\end{align*}
$$

Here, the superscript H_{0} on an operator indicates that its time dependence is given in the interaction picture, i.e., w.r.t. the unperturbed Hamiltonian.
(c) Now, we choose the gauge $\phi=0$ and consider a particle in a spatially constant external electric field of the form $\mathbf{E}=-\frac{1}{c} \partial_{t} \mathbf{A}$.
Show that $\left\langle\hat{j}_{A, \mu}(\omega)\right\rangle=\left.\sigma_{\mu \nu}\right|_{\mathbf{p}=\mathbf{0}}(\omega) E_{\nu}(\omega)$, where \mathbf{p} denotes momentum and

$$
\begin{equation*}
\left.\sigma_{\mu \nu}\right|_{\mathbf{p}=\mathbf{0}}(\omega)=\frac{i}{\omega}\left(\chi_{j_{\mu}, j_{\nu}}(\mathbf{p}=\mathbf{0}, \omega)+\frac{e^{2} n}{m} \delta_{\mu \nu}\right) . \tag{8}
\end{equation*}
$$

Exercise 2. Matsubara sums

The Matsubara technique usually requires calculating sums of the type

$$
\begin{equation*}
S=\frac{1}{\beta} \sum_{n} F\left(i \omega_{n}\right), \tag{9}
\end{equation*}
$$

where $F(z)$ has simple poles at $z=z_{i}$, where $\operatorname{Re}\left(z_{i}\right) \neq 0$, and residues $R\left(z_{i}\right)$. In this exercise, we recall a useful technique for this, which is based on rewriting the sum as a contour integral.
(a) Consider the function $(\zeta \in\{ \pm 1\})$

$$
\begin{equation*}
n_{\zeta}(z)=\frac{1}{\exp (\beta z)-\zeta} \tag{10}
\end{equation*}
$$

What is its pole-structure (i.e., where are its poles and what are the residues)?
(b) Use this to transform S into a contour integral over $n_{\zeta}(z) F(z)$.
(c) Assume that F vanishes sufficiently quickly for $|z| \rightarrow \infty$ and deform the contour. Then, take a clever deformation of the contour to pick up the contributions from the poles of F. Use this to show

$$
\begin{equation*}
S=-\zeta \sum_{i} n_{\zeta}\left(z_{i}\right) R\left(z_{i}\right) \tag{11}
\end{equation*}
$$

Exercise 3. Free energy of non-interacting fermions
The free energy of a Fermi gas described in the grand canonical ensemble reads

$$
\begin{equation*}
F=-\frac{1}{\beta} \ln \operatorname{Tr}[\rho]=-\frac{1}{\beta} \sum_{k} \ln \left[1+\exp \left(-\beta \xi_{k}\right)\right], \tag{12}
\end{equation*}
$$

where $\xi_{k}=\epsilon_{k}-\mu$. Let us calculate the free energy for a Fermi gas in a continuum approach as well as from a discretized field integral.
(a) In the continuum approach, a system of non-interacting fermions is described by the action

$$
\begin{equation*}
S=\int_{0}^{\beta} \mathrm{d} \tau \sum_{k} \bar{\psi}_{k}(\tau)\left[\partial_{\tau}+\xi_{k}\right] \psi_{k}(\tau) \tag{13}
\end{equation*}
$$

with Grassmann fields $\psi_{k}(\tau)$. Perform a discrete Fourier transformation using Matsubara frequencies to show that

$$
\begin{equation*}
F=-\frac{1}{\beta} \ln \mathcal{Z}=-\frac{1}{\beta} \sum_{k, n} \ln \left[\beta\left(-i \omega_{n}+\xi_{k}\right)\right] . \tag{14}
\end{equation*}
$$

(b) In order to evaluate the Matsubara frequency summation we introduce the auxiliary function $n(z)=\frac{1}{\exp (\beta z)+1}$ from Ex. 2 and consider $h(z)=\ln \left[-z+\xi_{k}\right]$. Assume that due to a suitable regularizer $\exp \left(i 0^{+} z\right)$, we can achieve that the contour integral for the sum $\sum_{n} \ln \left[\beta\left(-i \omega_{n}+\xi_{k}\right)\right]$ vanishes at the perimeter. Determine an integral expression for the above Matsubara sum and derive Eq. (12).
(c) The discretized field integral does not require any trick or regularization. We consider a discretized imaginary time axis with steps $\tau_{j}=j \frac{\beta}{N}$ with $0 \leq j \leq N-1$ and $\delta \tau_{j}=$ $\tau_{j}-\tau_{j-1}=\frac{\beta}{N}$. The Fourier transform is then

$$
\begin{equation*}
\psi_{k, j}=\frac{1}{\beta} \sum_{l=0}^{N-1} \exp \left(-i \omega_{l} \tau_{j}\right) \psi_{k, \omega_{l}}, \quad \quad \psi_{k, \omega_{l}}=C \sum_{j=0}^{N-1} \exp \left(i \omega_{l} \tau_{j}\right) \psi_{k, j} . \tag{15}
\end{equation*}
$$

What is C ? Determine a discretized form of the action for non-interacting electrons in the Matsubara representation. Derive the partition sum

$$
\begin{equation*}
\mathcal{Z}_{N}(\beta)=\prod_{k} \prod_{l=0}^{N-1}\left[1-\exp \left(i \omega_{l} \frac{\beta}{N}\right)+\frac{\beta}{N} \xi_{k} \exp \left(i \omega_{l} \frac{\beta}{N}\right)\right] . \tag{16}
\end{equation*}
$$

Contrary to the expression in Eq. (14), this result is already regular. What is the origin of the regularizer that arises naturally in the discrete-integral approach?
(d) We can decompose the partition sum as

$$
\begin{equation*}
\ln \mathcal{Z}_{N}(\beta)=\ln \mathcal{Z}_{N}^{0}(\beta)+\sum_{k} \sum_{l=0}^{N-1} \ln \left[1-\frac{\beta \xi_{k}}{N} \frac{1}{1-W_{l}}\right] \tag{17}
\end{equation*}
$$

where $\mathcal{Z}_{N}^{0}(\beta)=\prod_{l=0}^{N-1}\left[1-\exp \left(i \omega_{l} \frac{\beta}{N}\right)\right]$ and $W_{l}=\exp \left(-i \pi \frac{2 l+1}{N}\right)$. Compute the first term and show that $\ln \mathcal{Z}_{N}^{0}(\beta)=\ln 2$. Hint: Use $\prod_{k=0}^{N-1} \sin \left(\frac{\pi k}{N}+x\right)=2^{1-N} \sin (N x)$.
(e) The sum over l in Eq. (17) contains values for W_{l} on the unit circle in discrete steps of $\exp \left(-i 2 \pi \frac{l}{N}\right)$. We can thus split the sum as $(1 \ll \Lambda \ll N)$

$$
\begin{align*}
& \sum_{l=0}^{N-1} \ln \left[1-\frac{\beta \xi_{k}}{N} \frac{1}{1-W_{l}}\right]= \tag{18}\\
& \underbrace{\sum_{l=0}^{\Lambda / 2}\left(\ln \left[1-\frac{\beta \xi_{k}}{N} \frac{1}{1-W_{l}}\right]+\text { c.c. }\right)}_{\Sigma^{L}}+\underbrace{\sum_{l=\Lambda / 2+1}^{N / 2-1}\left(\ln \left[1-\frac{\beta \xi_{k}}{N} \frac{1}{1-W_{l}}\right]+\text { c.c. }\right)}_{\sum^{H}} .
\end{align*}
$$

Perform the sum \sum^{L} by expanding the argument of the logarithm for large N and using $\cosh x=\prod_{k=1}^{\infty}\left[1+\frac{4 x^{2}}{(2 k-1)^{2} \pi^{2}}\right]$.
The denominator of \sum^{H} has no singularity, and, for large N, the step size $\approx \frac{2 \pi}{N}$ is small. We therefore replace the sum by an integral. Evaluate the integral by expanding the logarithm for large N, and show $\sum^{H} \approx-\beta \xi_{k} / 2$.
Combine these results to identify the expression from Eq. (12).

Discussion of the problem set on Nov. 5, 2019.

