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Problem Set 3: Kubo formula, free energy of Fermi gas

Exercise 1. Kubo formula: Conductivity in a weak external electromagnetic field

We consider N particles in an external electromagnetic field (φ,A) described by the Hamil-
tonian

H =
N∑
i=1

[
1

2m

(
p̂i −

e

c
A(x̂i, t)

)2
+ eφ(x̂i, t)

]
, (1)

where we use the notation Ô = (Ôx, Ôy, Ôz)
T .

(a) Consider the following first-quantized operators,

n̂(x) =
N∑
i=1

δ(x− x̂i), (2)

ĵ(x) =
e

2m

N∑
i=1

[
p̂iδ(x− x̂i) + δ(x− x̂i)p̂i

]
, (3)

ĵA(x) =
e

2m

N∑
i=1

[(
p̂i −

e

c
A(x̂i, t)

)
δ(x− x̂i) + δ(x− x̂i)

(
p̂i −

e

c
A(x̂i, t)

)]
, (4)

where p̂i = −i∇xi , and the current ĵA(x) is composed of a paramagnetic and diamagne-

tic contribution, ĵA(x) = ĵ(x)− e2

mc
n̂(x)A. The latter is responsible for the diamagnetic

effect occuring in the presence of an external magnetic field in diamagnetic materials.
In paramagnetic materials the former contribution dominates the current.

Rewrite H such that the parts linear in the external fields couple to ĵA(x) and n̂(x).

(b) Show that the linear response of 〈̂jA(x, t)〉 to an external electromagnetic perturbation
(φ,A) is given by

〈ĵA,µ(x, t)〉 =

∫
d3x′dt′

[
− 1

c
χjµ,jν (x− x′, t− t′)Aν(x′, t′)

+ eχjµ,n(x− x′, t− t′)φ(x′, t′)
]
− e2n

mc
Aµ(x, t), (5)

with the retarded susceptibilities

χjµ,jν (x− x′, t− t′) = −iΘ(t− t′) 〈 [ĵH0
µ (x, t), ĵH0

ν (x′, t′)] 〉, (6)

χjµ,n(x− x′, t− t′) = −iΘ(t− t′) 〈 [ĵH0
µ (x, t), n̂H0(x′, t′)] 〉. (7)

Here, the superscript H0 on an operator indicates that its time dependence is given in
the interaction picture, i.e., w.r.t. the unperturbed Hamiltonian.
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(c) Now, we choose the gauge φ = 0 and consider a particle in a spatially constant external
electric field of the form E = −1

c
∂tA.

Show that 〈ĵA,µ(ω)〉 = σµν |p=0(ω)Eν(ω), where p denotes momentum and

σµν |p=0(ω) =
i

ω

(
χjµ,jν (p = 0, ω) +

e2n

m
δµν

)
. (8)

Exercise 2. Matsubara sums

The Matsubara technique usually requires calculating sums of the type

S =
1

β

∑
n

F (iωn), (9)

where F (z) has simple poles at z = zi, where Re(zi) 6= 0, and residues R(zi). In this exercise,
we recall a useful technique for this, which is based on rewriting the sum as a contour integral.

(a) Consider the function (ζ ∈ {±1})

nζ(z) =
1

exp(βz)− ζ
. (10)

What is its pole-structure (i.e., where are its poles and what are the residues)?

(b) Use this to transform S into a contour integral over nζ(z)F (z).

(c) Assume that F vanishes sufficiently quickly for |z| → ∞ and deform the contour. Then,
take a clever deformation of the contour to pick up the contributions from the poles of
F . Use this to show

S = −ζ
∑
i

nζ(zi)R(zi). (11)

Exercise 3. Free energy of non-interacting fermions

The free energy of a Fermi gas described in the grand canonical ensemble reads

F = − 1
β

ln Tr[ρ] = − 1
β

∑
k

ln
[
1 + exp (−βξk)

]
, (12)

where ξk = εk − µ. Let us calculate the free energy for a Fermi gas in a continuum approach
as well as from a discretized field integral.

(a) In the continuum approach, a system of non-interacting fermions is described by the
action

S =

∫ β

0

dτ
∑
k

ψ̄k(τ)[∂τ + ξk]ψk(τ), (13)

with Grassmann fields ψk(τ). Perform a discrete Fourier transformation using Matsubara
frequencies to show that

F = − 1
β

lnZ = − 1
β

∑
k,n

ln
[
β(−iωn + ξk)

]
. (14)
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(b) In order to evaluate the Matsubara frequency summation we introduce the auxiliary
function n(z) = 1

exp(βz)+1
from Ex. 2 and consider h(z) = ln[−z + ξk]. Assume that due

to a suitable regularizer exp (i0+z), we can achieve that the contour integral for the sum∑
n ln[β(−iωn + ξk)] vanishes at the perimeter. Determine an integral expression for the

above Matsubara sum and derive Eq. (12).

(c) The discretized field integral does not require any trick or regularization. We consider
a discretized imaginary time axis with steps τj = j β

N
with 0 ≤ j ≤ N − 1 and δτj =

τj − τj−1 = β
N

. The Fourier transform is then

ψk,j =
1

β

N−1∑
l=0

exp(−iωlτj)ψk,ωl , ψk,ωl = C
N−1∑
j=0

exp(iωlτj)ψk,j. (15)

What is C? Determine a discretized form of the action for non-interacting electrons in
the Matsubara representation. Derive the partition sum

ZN(β) =
∏
k

N−1∏
l=0

[
1− exp

(
iωl

β

N

)
+
β

N
ξk exp

(
iωl

β

N

)]
. (16)

Contrary to the expression in Eq. (14), this result is already regular. What is the origin
of the regularizer that arises naturally in the discrete-integral approach?

(d) We can decompose the partition sum as

lnZN(β) = lnZ0
N(β) +

∑
k

N−1∑
l=0

ln

[
1− βξk

N

1

1−Wl

]
, (17)

where Z0
N(β) =

∏N−1
l=0 [1− exp (iωl

β
N

)] and Wl = exp (−iπ 2l+1
N

). Compute the first term

and show that lnZ0
N(β) = ln 2. Hint: Use

∏N−1
k=0 sin (πk

N
+ x) = 21−N sin (Nx).

(e) The sum over l in Eq. (17) contains values for Wl on the unit circle in discrete steps of
exp (−i2π l

N
). We can thus split the sum as (1� Λ� N)

N−1∑
l=0

ln

[
1− βξk

N

1

1−Wl

]
= (18)

Λ/2∑
l=0

(
ln

[
1− βξk

N

1

1−Wl

]
+ c.c.

)
︸ ︷︷ ︸∑L

+

N/2−1∑
l=Λ/2+1

(
ln

[
1− βξk

N

1

1−Wl

]
+ c.c.

)
︸ ︷︷ ︸∑H

.

Perform the sum
∑L by expanding the argument of the logarithm for large N and using

coshx =
∏∞

k=1

[
1 + 4x2

(2k−1)2π2

]
.

The denominator of
∑H has no singularity, and, for large N , the step size ≈ 2π

N
is small.

We therefore replace the sum by an integral. Evaluate the integral by expanding the
logarithm for large N , and show

∑H ≈ −βξk/2.

Combine these results to identify the expression from Eq. (12).

Discussion of the problem set on Nov. 5, 2019.
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