Problem Set 2: Path Integrals

Exercise 1. Lagrangian formulation of the path integral
In the lecture, we derived the path integral formula for the transition amplitude in the Hamiltonian formalism:

$$
\begin{align*}
& G\left(x_{b}, t_{b} ; x_{a}, t_{a}\right)=\int_{x\left(t_{a}\right)=x_{a}}^{x\left(t_{b}\right)=x_{b}} \mathcal{D}\{x, p\} \exp \left(\frac{i}{\hbar} S[x(t), p(t)]\right) \tag{1}\\
& \text { where } \quad \mathcal{D}\{x, p\}=\lim _{N \rightarrow \infty} \prod_{i=1}^{N-1} d x_{i} \prod_{j=1}^{N} \frac{d p_{j}}{2 \pi \hbar}, \quad S=\int_{t_{a}}^{t_{b}} d t[p \dot{x}-H(p, x)] .
\end{align*}
$$

Let's consider a Hamiltonian $H=p^{2} / 2 m+V(x)$. By applying a time-slicing and integrating out momenta, show that G can be rewritten as

$$
\begin{align*}
& G\left(x_{b}, t_{b} ; x_{a}, t_{a}\right)=\int_{x\left(t_{a}\right)=x_{a}}^{x\left(t_{b}\right)=x_{b}} \tilde{\mathcal{D}} x \exp \left(\frac{i}{\hbar} S[x(t), \dot{x}(t)]\right) \tag{2}\\
& \text { where } \quad \tilde{\mathcal{D}} x=\lim _{N \rightarrow \infty}\left(\frac{m N}{2 \pi \hbar i\left(t_{b}-t_{a}\right)}\right)^{N / 2} \cdot \prod_{i=1}^{N-1} d x_{i}, \quad S=\int_{t_{a}}^{t_{b}} d t\left[\frac{m \dot{x}^{2}}{2}-V(x)\right] .
\end{align*}
$$

You may apply a formula for Gaussian integrals, which holds for imaginary matrices by analytic continuation (Fresnel integral formula).

Exercise 2. Path integral for the harmonic oscillator
Consider the transition amplitude for the harmonic oscillator, given by (with $\hbar=1$):

$$
\begin{equation*}
G\left(x_{b}, t_{b} ; x_{a}, 0\right)=\int_{x(0)=x_{a}}^{x\left(t_{b}\right)=x_{b}} \tilde{\mathcal{D}} x \exp (i S), \quad \text { with } S=\int_{0}^{t_{b}} d t \frac{m}{2}\left(\dot{x}^{2}-\omega^{2} x^{2}\right) . \tag{3}
\end{equation*}
$$

(a) Let $x_{c l}$ be a classical trajectory with $x_{c l}(0)=x_{a}, x_{c l}\left(t_{b}\right)=x_{b}$. Show that

$$
\begin{equation*}
G\left(x_{b}, t_{b} ; x_{a}, 0\right)=\exp \left(i S\left[x_{c l}\right]\right) \cdot G\left(0, t_{b} ; 0,0\right) \tag{4}
\end{equation*}
$$

by choosing the parametrization $x(t)=x_{c l}(t)+y(t)$ for an arbitrary path $x(t)$.
(b) To evaluate $G\left(0, t_{b}, 0,0\right)$, we perform a time-slicing. Check that the time-sliced action can be written as

$$
\begin{equation*}
S_{N}=\frac{m \epsilon}{2} \sum_{i=1}^{N}\left(\frac{y_{i}-y_{i-1}}{\epsilon}\right)^{2}-\omega^{2} y_{i}^{2}, \quad y_{0}=y_{N}=0, \quad \epsilon N=t_{b} \tag{5}
\end{equation*}
$$

(c) Let's introduce the lattice derivatives

$$
\begin{equation*}
\nabla y(t)=\frac{1}{\epsilon}(y(t+\epsilon)-y(t)), \quad \bar{\nabla} y(t)=\frac{1}{\epsilon}(y(t)-y(t-\epsilon)) . \tag{6}
\end{equation*}
$$

Rewrite the kinetic part of S_{N} in terms of the lattice laplacian $\bar{\nabla} \nabla$. What is the matrix structure $(\bar{\nabla} \nabla)_{i j}$ of this operator?
(d) Compute $(-\bar{\nabla} \nabla y)(\nu)$ in Fourier space (for a continuous function y).
(e) For the discretized path y_{i}, the Fourier transform can be phrased as

$$
\begin{equation*}
y_{i}=\sum_{n=1}^{N-1} \sqrt{\frac{2}{N}} \sin \left(\nu_{n} t_{i}\right) y\left(\nu_{n}\right), \quad t_{i}=i \epsilon(i \in \mathbb{N} \text { here }), \quad \nu_{n}=\frac{\pi n}{\epsilon N} . \tag{7}
\end{equation*}
$$

Conclude the eigenvalues of the matrix $\left(-\bar{\nabla} \nabla-\omega^{2}\right)_{i j}$, and evaluate $G\left(0, t_{b} ; 0,0\right)$.
(f) Use the substitution

$$
\begin{equation*}
\sin \frac{\epsilon \tilde{\omega}}{2}:=\frac{\epsilon \omega}{2} \tag{8}
\end{equation*}
$$

and the identities

$$
\begin{equation*}
\prod_{n=1}^{N-1}\left[1-\frac{\sin ^{2} x}{\sin ^{2} \frac{n \pi}{2 N}}\right]=\frac{1}{\sin 2 x} \frac{\sin (2 N x)}{N} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\prod_{n=1}^{N-1}\left[1+x^{2}-2 x \cos \left(\frac{n \pi}{N}\right)\right]=\frac{x^{2 N}-1}{x^{2}-1} \tag{10}
\end{equation*}
$$

to show that (assuming $t_{b} \cdot \tilde{\omega}<\pi$)

$$
\begin{equation*}
G\left(0, t_{b} ; 0,0\right)=\lim _{\epsilon \rightarrow 0} \frac{1}{\sqrt{2 \pi i / m}} \sqrt{\frac{\sin \tilde{\omega} \epsilon}{\epsilon \sin \tilde{\omega} t_{b}}} . \tag{11}
\end{equation*}
$$

(g) Take the limit $\epsilon \rightarrow 0$.
(h) Determine $G\left(0, t_{b} ; 0,0\right)$ for a free particle by taking the limit $\omega \rightarrow 0$.
(i) Compute the euclidean transition amplitude $G(0,-i \tau ; 0,0)$ in the limit $\tau \rightarrow \infty$.

Exercise 3. Classical interpretation of instantons
(a) In the lecture we have found that an instanton and anti-instanton attract each other. Find a qualitative explanation of this which is based on the picture of a particle moving in the inverted double well potential.
(b) Let's consider a periodic potential where there can be multiple instanton configurations. How do these interact?

No computations are required in this exercise!
Discussion of the problem set on Oct. 29, 2019.

