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Problem Set 2: Path Integrals

Exercise 1. Lagrangian formulation of the path integral

In the lecture, we derived the path integral formula for the transition amplitude in the Ha-
miltonian formalism:

G(xb, tb;xa, ta) =

∫ x(tb)=xb

x(ta)=xa

D{x, p} exp

(
i

~
S[x(t), p(t)]

)
, (1)

where D{x, p} = lim
N→∞

N−1∏
i=1

dxi

N∏
j=1

dpj
2π~

, S =

∫ tb

ta

dt [pẋ−H(p, x)] .

Let’s consider a Hamiltonian H = p2/2m+ V (x). By applying a time-slicing and integrating
out momenta, show that G can be rewritten as

G(xb, tb;xa, ta) =

∫ x(tb)=xb

x(ta)=xa

D̃x exp

(
i

~
S[x(t), ẋ(t)]

)
, (2)

where D̃x = lim
N→∞

(
mN

2π~i(tb − ta)

)N/2
·
N−1∏
i=1

dxi, S =

∫ tb

ta

dt

[
mẋ2

2
− V (x)

]
.

You may apply a formula for Gaussian integrals, which holds for imaginary matrices by
analytic continuation (Fresnel integral formula).

Exercise 2. Path integral for the harmonic oscillator

Consider the transition amplitude for the harmonic oscillator, given by (with ~ = 1):

G(xb, tb;xa, 0) =

∫ x(tb)=xb

x(0)=xa

D̃x exp(iS) , with S =

∫ tb

0

dt
m

2
(ẋ2 − ω2x2). (3)

(a) Let xcl be a classical trajectory with xcl(0) = xa, xcl(tb) = xb. Show that

G(xb, tb;xa, 0) = exp(iS[xcl]) ·G(0, tb; 0, 0) (4)

by choosing the parametrization x(t) = xcl(t) + y(t) for an arbitrary path x(t).

(b) To evaluate G(0, tb, 0, 0), we perform a time-slicing. Check that the time-sliced action
can be written as

SN =
mε

2

N∑
i=1

(
yi − yi−1

ε

)2

− ω2y2i , y0 = yN = 0, εN = tb. (5)
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(c) Let’s introduce the lattice derivatives

∇y(t) =
1

ε

(
y(t+ ε)− y(t)

)
, ∇y(t) =

1

ε

(
y(t)− y(t− ε)

)
. (6)

Rewrite the kinetic part of SN in terms of the lattice laplacian ∇∇. What is the matrix
structure (∇∇)ij of this operator?

(d) Compute (−∇∇y)(ν) in Fourier space (for a continuous function y).

(e) For the discretized path yi, the Fourier transform can be phrased as

yi =
N−1∑
n=1

√
2

N
sin(νnti)y(νn), ti = iε (i ∈ N here), νn =

πn

εN
. (7)

Conclude the eigenvalues of the matrix (−∇∇− ω2)ij, and evaluate G(0, tb; 0, 0).

(f) Use the substitution

sin
εω̃

2
:=

εω

2
(8)

and the identities
N−1∏
n=1

[
1− sin2 x

sin2 nπ
2N

]
=

1

sin 2x

sin(2Nx)

N
(9)

and
N−1∏
n=1

[
1 + x2 − 2x cos(nπ

N
)
]

=
x2N − 1

x2 − 1
(10)

to show that (assuming tb · ω̃ < π)

G(0, tb; 0, 0) = lim
ε→0

1√
2πi/m

√
sin ω̃ε

ε sin ω̃tb
. (11)

(g) Take the limit ε→ 0.

(h) Determine G(0, tb; 0, 0) for a free particle by taking the limit ω → 0.

(i) Compute the euclidean transition amplitude G(0,−iτ ; 0, 0) in the limit τ →∞.

Exercise 3. Classical interpretation of instantons

(a) In the lecture we have found that an instanton and anti-instanton attract each other.
Find a qualitative explanation of this which is based on the picture of a particle moving
in the inverted double well potential.

(b) Let’s consider a periodic potential where there can be multiple instanton configurations.
How do these interact?

No computations are required in this exercise!

Discussion of the problem set on Oct. 29, 2019.
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