Exercises for Conformal Field Theory (MD4)

1 Solution exercise 1

We have $N(T T)_{n}=\sum_{k>-2} L_{n-k} L_{k}+\sum_{k \leq-2} L_{k} l_{n-k}$ and $\left(\partial^{2} T\right)_{n}=(n+2)(n+3) L_{n}$. We compute

$$
\left.\begin{array}{rl}
{\left[L_{m}, \mathcal{N}(T T)_{n}\right]=} & \underbrace{\left[L_{m}, \sum_{k>-2} L_{n-k} L_{k}+\sum_{k \leq-2} L_{k} l_{n-k}\right.}_{\equiv I}-\frac{3}{10}(n+2)(n+3) L_{n}] \\
= & -\frac{3}{10}(n+2)(n+3)(m-n) L_{m+n}
\end{array}+\sum_{k \geq-1} L_{n-k} L_{m+k}(m-k)+(m-n+k) L_{m+n-k} L_{k}\right] \sum_{k \leq-2} L_{k} L_{m+n-k}(m-n+k)+(m-k) L_{m+k} L_{n-k} .
$$

In the third equality we introduced a new summation index $\tilde{k}=m+k$. Then we have $k=\tilde{k}-m$ which gives the last two terms in the above expression. From here we do a case by case computation.
$m=0$

$$
\begin{align*}
& =-\frac{3}{10}(n+2)(n+3)(-n) L_{n}+(-n)\left(\sum_{k \geq-1} L_{n-k} L_{k}+\sum_{k \leq-2} L_{k} L_{n-k}\right) \tag{2}\\
& =(-n) \mathcal{N}(T T)_{n}
\end{align*}
$$

as the summations involving k in the summands cancel.
$m=1$

$$
\begin{align*}
&= I+(1-n) N(T T)_{n+1}+\sum_{k \geq-1} k L_{1+n-k} L_{k}+\sum_{k \leq-2} k L_{k} L_{1+n-k} \\
& \quad+\sum_{\tilde{k} \geq 0}(2-\tilde{k}) L_{1+n-\tilde{k}} L_{\tilde{k}}+\sum_{\tilde{k} \leq-1}(2-\tilde{k}) L_{\tilde{k}} L_{1+n-k} \\
&= I+(1-n) N(T T)_{n+1}-L_{2+n} L_{-1}+L_{-1} L_{2+n}-2 L_{2+n} L_{-1}+2 L_{-1} L_{2+n}+2 N(T T)_{1+n} \\
&=-\frac{3}{10}(n+3)(n+4)(3-n) L_{1+n}+(3-n) N(T T)_{1+n}+\frac{3}{10}[(n+3)(n+4)(3-n) \tag{3}\\
&\quad \quad-(1-n)(n+2)(n+3)] L_{1+n}-3\left[L_{2+n}, L_{-1}\right] \\
&=(3-n) \mathcal{N}(T T)_{1+n}+\frac{3}{10}[10 n+30] L_{1+n}-(3 n+3) L_{1+n} \\
&=(3-n) \mathcal{N}(T T)_{1+n}
\end{align*}
$$

The case $m=-1$ has the same steps as the $m=1$ case.

