Exercises for Conformal Field Theory (MD4)

Problem set 8, due December 18, 2019

If you have questions write an E-mail to: mtraube@mpp.mpg.de

1 c = 1 theories: Bosonization & Fermionization and their moduli space

- A) N free fermions transforming in the vector representation of SO(N) obey the $\hat{\mathfrak{so}}(N)_1$ Kac-Moody algebra and have $c = \frac{N}{2}$. Compute their partition function. Hint: How does the Fock-space change when going from one to N free fermions?
- B) In the lecture we had another bosonic theory, the free boson on the orbifold S^1/\mathbb{Z}_2 . At radius one this theory can be fermionized as well, giving a different theory of fermions. Interpret the S^1/\mathbb{Z}_2 theory in terms of fermionic theories by writing the partition functions in terms of θ functions.
- C) (Optional) The moduli space of c = 1 theories has an ADE classification with three exceptional theories. The A series was the free boson on a circle, the D series its \mathbb{Z}_2 orbifold. Show that the A and D series intersect in one point. For this show $\mathcal{Z}_{S^1}(R = 2\sqrt{2}) = \mathcal{Z}_{S^1/\mathbb{Z}_2}(R = \sqrt{2})$.

2 Free boson on S^1 as orbifold

Recompute the partition function of the free boson on a S^1 as orbifold \mathbb{R}/g where $g(x) = x + 2\pi R$. Use the general formula for an orbifold partition function. Compute the effect of the projector and determine the twisted sector and its mode expansion.

3 Shift orbifold

We consider a free boson on an orbifold $S^1/(-1)^{\mathcal{P}}$. The \mathbb{Z}_2 operator $(-1)^{\mathcal{P}}$ acts on a state with momentum m and winding n as $(-1)^{\mathcal{P}}|m,n\rangle = (-1)^m|m,n\rangle$. Compute the partition function of this orbifold in the following way:

- A) Determine the action of the Z₂ onto the coordinate X.
 Hint: Recall sheet 4. The result explains the name "shift orbifold".
- B) Formulate the twisted boundary conditions and read off the mode expansion of the twisted sector.
- C) Compute the partition function for the twisted sector.