Exercises for Conformal Field Theory (MD4)

Problem set 7, due December 11, 2019
If you have questions write an E-mail to: mtraube@mpp.mpg.de

1 The Poisson Resummation Formula

To show the modular invariance of e.g. the partition function of free boson on a circle one needs the Poisson resummation formula

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \exp \left(-\pi a n^{2}+b n\right)=\frac{1}{\sqrt{a}} \sum_{k \in \mathbb{Z}} \exp \left(-\frac{\pi}{a}\left(k+\frac{b}{2 \pi i}\right)^{2}\right) \tag{1}
\end{equation*}
$$

Its key property is to invert the prefactor which is needed to compute the behavior under a modular S transformation. You are asked to verify this formula in two different ways:
A) Use the discrete Fourier transform of the Dirac comb $\sum_{n} \delta(x-n)$

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} \delta(x-n)=\sum_{k \in \mathbb{Z}} e^{2 \pi i k x} \tag{2}
\end{equation*}
$$

B) The inversion property of the Poisson resummation formula is of course well known from the Fourier transformation. Indeed one can easily check that both sides in (1) are connected by a Fourier transformation. This hints that the above formula is a corollary of the more general formula

$$
\sum_{n \in \mathbb{Z}} f(n)=\sum_{k \in \mathbb{Z}} \hat{f}(k), \text { where } \hat{f}(z)=\int_{-\infty}^{\infty} f(x) e^{2 \pi \mathrm{i} z x} d x
$$

Prove that this formula holds for any test function f. Do not use the Dirac comb method again!
Hints: At some place you might need a shift by ic. Furthermore any test function f has a RiemannHilbert decomposition $f(z)=f_{+}(z)+f_{-}(z)$ where $f_{ \pm}(z)$ is analytically (singular freely) extendable to the upper/lower plane.

2 The Free Boson on a Circle of Radius $R=\sqrt{2 k}$

You have learned in the lecture that the partition function of a free boson on a circle of radius $R=\sqrt{2 k}$ where $k \in \mathbb{Z}^{+}$can be written as

$$
\begin{equation*}
\mathcal{Z}(\tau, \bar{\tau})=\frac{1}{|\eta(\tau)|^{2}} \sum_{m=-k+1}^{k}\left|\Theta_{m, k}(q)\right|^{2} \tag{3}
\end{equation*}
$$

The Θ functions are defined as

$$
\begin{equation*}
\Theta_{m, k}(\tau):=\sum_{n \in \mathbb{Z}+\frac{m}{2 k}} q^{k n^{2}}, \quad-k+1 \leq m \leq k \tag{4}
\end{equation*}
$$

(This is the generalized Θ function from the last sheet when ignoring the angular momentum dependence.)
A) Compute the transformation property of the Θ function under a modular S-transformation. Write it in the form

$$
\begin{equation*}
\Theta_{m, k}=\sqrt{-i \tau} \sum_{m^{\prime}=-k+1}^{k} S_{m, m^{\prime}} \Theta_{m^{\prime}, k}(\tau) \tag{5}
\end{equation*}
$$

B) Explain why the matrix S in (5) is really the modular S matrix. To do so state the characters $\chi_{m}^{(k)}$ of the theory and write their transformation law using (5).
C) Take a character $\chi_{m}^{(k)}$ and expand it in powers of q. Deduce the conformal dimension of the highest weight corresponding to the character.

Note: Exercise B) and C) can be done without the solution of exercise (i). Everything you computed in this exercise will reappear in $\mathcal{N}=2$ superconformal field theories since their minimal models can be written as cosets with several $\hat{\mathfrak{u}}(1)_{k}$ factors.

